Электрические реле времени, классификация и условные графические обозначения. реле обозначение на схеме

Условные графические и буквенные обозначения реле на электрических схемах

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Наименование Изображение
1. Функция контактора
2. Функция выключателя
3. Функция разъединителя
4. Функция выключателя-разъединителя
5. Автоматическое срабатывание
6. Функция путевого или концевого выключателя
7. Самовозврат
8. Отсутствие самовозврата
9. Дугогашение
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах.

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):гнездоштырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Наименование Изображение
Линия электрической связи, провода, кабели, шины, линия групповой связи
Защитный проводник (PE) допускается изображать штрихпунктирной линией
Графическое разветвление (слияние) линий групповой связи
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных
Линия электрической связи с одним ответвлением
Линия электрической связи с двумя ответвлениями
Шина (если необходимо графически отделить от изображения линии электрической связи)
Ответвление шины
Шины, графически пересекающиеся и электрически не соединенные
Отводы (отпайки) от шины

Типичные реализации источника, генератора тока

Приведенные схемы обладают рядом серьезных недостатков. Схема A1

на полевом транзисторе – одна из худших реализаций. Рассчитать ее параметры невозможно, так как они зависят от индивидуальных особенностей экземпляра полевого транзистора. Нужный ток устанавливается подбором резистора. Схема может функционировать, когда сопротивление резистора равно 0. Дифференциальное сопротивление (а значит стабильность тока) схемы невысоко, нередко оно бывает меньше 200 кОм. На работу этого варианта сильно влияет температура полевого транзистора. Преимущество одно – это действительно двухполюсник. Он не требует подвода дополнительного питания

Это бывает очень важно в некоторых схемах

Схема A2

обладает гораздо лучшими характеристиками. В случае применения транзисторов с большим коэффициентом передачи тока, схема может иметь дифференциальное сопротивление выше 1 МОм (10 МОм, или даже больше). Но вывода у схемы не два, а три. Так что она может быть включена только в некоторые электронные схемы, в которых один вывод источника тока подключен к шине питания или общему проводу, и есть возможность подвести к одному из выводов общий провод или питание соответственно. На рисунке приведена схема с подключением к шине питания. Схема с подключением к общему проводу выглядит совершенно аналогично с той разницей, что ее надо перевернуть и поменять проводимость транзистора и полярность стабилитрона.

Читать также: Подключить электродвигатель 380 на 220 через пускатель

Обратите внимание, что в схеме в качестве источника опорного напряжения используется стабилитрон. Для стабилитронов характерна зависимость напряжения стабилизации от температуры

Помните об этом при проектировании источников тока. Стабилитрон может быть источником шумов. Чтобы уменьшить их влияние на работу устройства параллельно стабилитрону можно подключить керамический конденсатор емкость 0.1 мкФ.

Расчет транзисторного источника тока

Принцип действия приведенной схемы основан на том, что напряжение на резисторе R1

поддерживается равным напряжению на стабилитроне минус напряжение насыщения эмиттерного перехода транзистора. Напряжение на резисторе пропорционально току нагрузки. Так что этот ток также поддерживается на заданном уровне. Если ток нагрузки падает, то напряжение на резисторе также падает. Ток базы транзистора растет, что приводит к открытию транзистора и росту тока. Если ток нагрузки растет, то транзистор наоборот закрывается.

Ориентировочный расчет транзисторного источника тока можно выполнить так. Выбираем стабилитрон. Вычисляем напряжение на резисторе R1.

[Напряжение на резисторе R1, В

] = [Напряжение стабилизации стабилитрона, В ] – [Напряжение насыщения эмиттерного перехода транзистора, В ]

Исходя из необходимой силы тока, определяем сопротивление резистора R1.

[Сопротивление резистора R1, Ом

] = [Напряжение на резисторе R1, В ] / [Необходимая сила тока источника, А ]

[Сопротивление резистора R2, Ом

] = 0.8 * ([Напряжение питания, В ] – [Напряжение стабилизации стабилитрона, В ]) * [Коэффициент передачи тока транзистора ] / [Необходимая сила тока источника, А ]

[Максимально возможное напряжение на нагрузке, В

] = [Напряжение питания, В ] – [Напряжение на резисторе R1, В ] – [Напряжение насыщения коллектор – эмиттер транзистора, В ]

[Мощность транзистора, Вт

] = ([Напряжение питания, В ] – [Напряжение на резисторе R1, В ]) * [Необходимая сила тока источника, А ]

[Мощность стабилитрона, Вт

] = 0.25 * [Необходимая сила тока источника, А ] * [Напряжение стабилизации стабилитрона, В ] / [Коэффициент передачи тока транзистора ]

[Мощность резистора R1, Вт

] = [Напряжение на резисторе R1, В ] * [Необходимая сила тока источника, А ]

[Мощность резистора R2, Вт

] = ([Напряжение питания, В ] – [Напряжение стабилизации стабилитрона, В ]) ^ 2 / [Сопротивление резистора R2, Ом ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите! Задать вопрос. Обсуждение статьи.

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение. Составной транзистор – схемы, применение, расчет параметров. Схемы Дарлингтона, .

Токовое управление. Транзисторная схемотехника, схема. Ток. Электроник. Усилитель ВЧ. Пример схемы специально для биполярного транзистора. Схемотехничес.

Простой импульсный прямоходовый преобразователь напряжения. 5 – 12 вол. Схема простого преобразователя напряжения для питания операционного усилителя.

Транзисторы КТ502, 2Т502. Справочник, справочные данные, параметры, цо. Характеристики и применение биполярных транзисторов КТ502 (КТ502А, КТ502Б, КТ502.

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Назначение устройства

Высокая нагрузка, которую испытывают электродвигатели, обусловливает рост потребления электроэнергии в процессе функционирования. Это часто приводит к превышению нормативных параметров работы оборудования. Перегрузка в электрической цепи является причиной быстрого роста температуры. А она, в свою очередь, вызывает появление неисправностей и аварий.

Назначение теплового реле состоит в создании предпосылок для поддержания нормальных условий эксплуатации посредством возможности отключения электроэнергии при перегрузках и риске аварии.

Это устройство замыкает или размыкает цепь по сигналу, поступающему от агрегата в зависимости от текущей рабочей температуры. В результате электродвигатель защищается от токовых перегрузок.

Среди преимуществ данного устройства можно отметить:

Но при этом потребуется периодическая проверка работоспособности и настройка.

Схема электрической цепи – применение и классификация.

Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной.

Источник питания на рис. Действующее значение связано с амплитудным простым соотношением 2. Нюансы графической маркировки Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы.

Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.

Когда по цепи течет ток, за некоторое время по ней пройдет некоторое количество электричества и выполнится определенная работа. В этом случае они считаются первичными. Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной на рис.

Электрическая схема подключения реле

На крышке любого устройства, производитель наносит принципиальную схему подключения электромагнитного реле в сеть. На электрической схеме катушку реле изображают прямоугольником и обозначают литерой «К» с цифровым индексом, например, К3. При этом контактные пары, которые не находятся под нагрузкой маркируются буквой «К» с двумя, разделенными точкой, цифрами. например, К3.2 — контакт номер 2, реле К3. Расшифровывается обозначение так: первая цифра – это порядковый номер электромагнитного реле на схеме, вторая обозначает индекс контактных пар данного реле.

Ниже приведён пример электрической схемы, на которой происходит управление соленоидом пневматического клапана с помощью НО контакта реле К1. После замыкания S1 реле запитывается и НО контакт 13, 14 замыкается, при этом на соленоиде Y1 появляется напряжение.

Контактные пары, которые располагаются вблизи электромагнитной катушки, обозначаются штриховой линией. В принципиальной схеме подключения реле обязательно отображаются все параметры контактных пар, указывается максимально допустимое значение коммутационного тока контактов. На катушке реле производитель указывает тип тока и рабочее напряжение.

Стоит отметить, что схема подключения электромагнитного реле составляется для каждого типа элемента сугубо индивидуально в соответствии с особенностями его работы в автоматизированной сети. При этом, для корректной работы некоторых типов реле необходима настройка, в ходе которой устанавливаются оптимальные параметры для работы реле: задержка активации, ток сработки, перезагрузка и т. д.

Основные виды и принцип работы реле времени

Принцип работы и схема подключения теплового реле

Что такое контактор: назначение, принцип работы, виды, схемы подключения

Для чего нужен магнитный пускатель и как его подключить

Что такое импульсное реле — схема подключения для управления освещением

Что такое электроконтактный манометр, назначение, принцип работы, схема подключения и обзор популярных моделей

Условные графические обозначения

Чтобы запомнить все элементы электрической цепи и их условные обозначения, необходимо изучить ГОСТ, представляющий собой объемный документ. Но даже в такой ситуации запомнить все практически невозможно. Чтобы при необходимости быстро прочитать электрическую схему, стоит всегда иметь под рукой шпаргалку. Начать изучение обозначений элементов на электрических схемах следует с наиболее распространенных, например, используемых в электропроводке.

В качестве примера можно использовать проводники и заземление. Первая группа элементов представляет собой не только провода и кабеля, но также электрические связи, например, дорожки печатных плат. Заземление — соединение проводников электроприборов и машин с землей. В результате при пробое корпуса человек не пострадает от электрического тока. Так как существует несколько типов заземлений, то каждое из них имеет собственный графический символ.

https://youtube.com/watch?v=YMNNBXz02Io

Обозначение розеток

Этот элемент электрической цепи представляет собой штепсельное соединение, с возможностью разорвать соединение вручную. Символы, используемые для указания розеток, строго регламентируются ГОСТ. При этом розетки можно разделить на несколько групп:

  • Для открытого монтажа.
  • Для скрытой установки.
  • Устройство, объединяющее выключатель и розетку.

Причем в каждой из этих групп существует дополнительное деление в зависимости от наличия защиты и способа подключения:

  • Однополюсные.
  • Двухполюсные с защитным контактом и без.
  • Трехполюсные с защитой и без.

Условные символы выключателей

С помощью выключателей можно быстро разорвать электрическое соединение. Это может происходить в ручном или автоматическом режиме. Как и в случае с розетками, условные символы выключателей регламентированы. В соответствии с их конструкцией существует несколько типов этих устройств. На электрической схеме в обязательном порядке должны быть указаны параметры выключателей. Графические символы могут сразу сказать, какой именно тип устройства используется в каждом конкретном случае: обычный, оптический, акустический и т. д.

Предохранители и автоматические выключатели

Сегодня используется большое количество защитных устройств. Все они отличаются конструкцией, сферой применения и техническими характеристиками. Однако существует общее обозначение предохранителя на схеме — прямоугольник, через центр которого параллельно длинной стороне проходит проводник. Такой символ используется для указания наиболее дешевых элементов цепи, предназначенных для ее защиты от коротких замыканий.

Электродвигатели

Этот элемент часто встречается на электросхемах. В промышленности большинство двигателей являются асинхронными с короткозамкнутым ротором. В настоящий момент времени широко используются и двигатели постоянного тока. Вполне очевидно, что каждый вид этих устройств обозначается на схеме определенным образом.

Сегодня радиоэлектроника развивается стремительно, и специалистам необходимо знать условные графические знаки различных радиоэлементов. Следует помнить, что ко всем обозначениям на схемах предъявляются жесткие требования, и для ознакомления с ними необходимо изучить ГОСТ.

Виды электрических схем

Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т. Принципиальные схемы могут быть однолинейными и полными.


Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы. Схематичное изображение выключателей и переключателей.


В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть.


Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема. Значки легко запоминаются.


Отсутствует обозначение в нормативах дифавтоматов и УЗО. Как изображают выключатели, переключатели, розетки На некоторые виды этого оборудования утвержденных стандартами изображений нет.


В — значок электричества, отображающий переменное напряжение.


Е — ИМ, на который дополнительно установлен ручной привод. Ноябрь г.

Урок 2 Условные графические обозначения элементов цепи

Функциональная схема

Она не отображает детально конструкцию, а содержит изображение основных блоков устройства с подписями и функциональных узлов. Ориентируясь на данный чертеж, можно только узнать о том, как работает вся система прибора, как связаны между собой различные элементы. Функциональную схему целесообразно применять для описания, например, сложного электронного устройства, но не всегда для устройств электроснабжения.

Принципиальная схема

Содержит в себе определенный набор обозначений элементов, в соответствии с составом прибора. Для верной расшифровки чертежа необходимо знать основные условно графические отображения электроэлементов. В таком виде схем указываются связи между устройствами и сами их составляющие элементы. Для отображения силовых линий целесообразно чертить линейную схему, а для указания видов электрических цепей и проборов контроля, управления – полная принципиальная.

Следует отметить, что на однолинейных чертежах изображена только силовая часть конструкции, а на полных принципиальных приводятся все элементы цепи.

Монтажная схема

Используется при установке элементов на печатные платы, при сборке приборов и электрических цепей. С её помощью мастер определяет какой компонент куда следует разместить, на каком расстоянии друг от друга и в какой последовательности, согласно буквенно-цифровой аббревиатуре рядом с элементом, расшифровка которой приводится либо отдельным документом, либо располагается таблицей в правом нижнем углу над основной надписью. Помимо этого, допускается расстановка номиналов.

Подробную информацию по каждому виду схем можно найти в ГОСТе 2.702-2011.

Тепловые реле

Эти реле очень часто используются в паре с электромагнитными реле (пускателями и контакторами) для защиты электрических цепей с электродвигателями от перегрузок

Если кто-нибудь обратил внимание, на рисунке, где была приведена схема нереверсивного пуска электродвигателя, присутствует и такое схематическое изображение:

Изображение на схеме тепловое реле

Ниже на рисунке показано устройство теплового реле:

Рисунок устройство теплового реле

Как устроено тепловое реле: в его состав входит биметаллическая пластина, сделанная из двух металлов имеющих различный коэффициент расширения. При нагреве биметаллическая пластина изгибается и освобождает пружину, которая размыкает силовые контакты теплового реле. Происходит это мгновенно, в целях быстрого гашения дуги. Так обозначается, на схемах (выделено красным) тепловое реле.

Обозначение на схема теплового реле

На рисунке под цифрой 2 изображены контакты теплового реле, которые размыкаются при срабатывании теплового реле и обесточивают двигатель. Под цифрой 1 показаны контакты теплового реле, которые входят в цепь с биметаллической пластиной. После срабатывания реле можно включить заново, после остывания пластины нажав на толкатель, размещенный на тепловом реле.

Реле напряжения на однолинейной схеме

Реле напряжения, это пример модульных аппаратов защиты, которые еще 5-7 лет назад устанавливалась лишь в электрощитах промышленных предприятий, а сейчас всё чаще встречаются в бытовых электроустановках квартир и частных домов.

Это специализированный государственный стандарт по модульным аппаратам защиты, работа которых основана на действии реле, в котором для реле напряжения принято следующее схематическое обозначение:

Оно складывается из нескольких символов:

— Общий графический знак всех реле — прямоугольник

— Измеряемой величины – «U» Напряжения

— Знаков больше «>» и меньше «», которые показывают диапазон работы

В качестве примера, на изображении ниже, показан модульный аппарат, который срабатывает при превышении напряжения в сети выше 250 Вольт или понижении уровня меньше 180 Вольт.

Обозначение трехфазной модификации устройства , внешне немногим отличается от однофазного, а вот в принципе работы и подключения у них есть существенные различия.

Что такое реле времени?

Надо полагать, что читатель этой статьи — не специалист в вопросах электротехники, а лишь пытливый пользователь, старающийся расширить свой кругозор и применить полученную информацию в повседневной жизни. Поэтому для начала будет полезно вспомнить, что же скрывается под общим термином «реле»?

Не будем приводить длинную «научную» формулировку этого понятия – она может быть не вполне понятна начинающему. А если говорить простыми словами, то реле – это электромеханическое или электронное устройство, которое производит коммутацию (соединение или разрыв) электрической цепи при получении внешнего управляющего сигнала. Если точнее, то срабатывание происходит, когда внешнее воздействие достигает какой-то заданной величины.

Первые реле были изобретены, изготовлены и применены еще в середине XIX века – они стали незаменимым компонентом аппаратов бурно развивающейся в те времена телеграфной связи. С тех пор, безусловно, эти устройства прошли длинный путь доработок и усовершенствований, повысилась их надежность, появились новые типы, способные работать в самых разных условиях эксплуатации. Но принцип остался неизменным – внешнее управляющее воздействие руководит замыканием, размыканием или переключением электрических цепей.


На схеме очень наглядно показан основной принцип работы электромеханического реле. Ну а количество контактов и схема их переключения при срабатывании устройства далеко не ограничивается этими двумя примерами.

По большей части реле управляются электрическими сигналами – когда показатели силы тока или напряжения достигают определенной величины. Но, кстати, управляющее воздействие вовсе не обязательно является электрическим. Существуют реле, срабатывание которых вызывается изменением давления в трубопроводе, температуры окружающей среды, освещенности объекта и другие. Все это открывает очень широкие возможности автоматизации и обеспечения безопасности эксплуатации разнообразной электрической техники.


Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления.

Можно добавить, что в наше время наряду с электромеханическими реле все шире используются «твердотельные» — электронные ключи, в которых переключение контактов происходит за свет использования каскадов полупроводниковых элементов или интегральных микросхем.

Теперь – к вопросу о том, что же такое реле времени.

А подсказка кроется в самом названии. Это в принципе такое же реле, но срабатывание которого происходит с определенной задержкой после подачи (или снятия) управляющего сигнала. Или же коммутация цепей производится с определенным алгоритмом по времени.

Такие устройства нашли очень широкое применение в автоматизации промышленного оборудования. Но их широко используют и в бытовых условиях. Например, на них можно переложить часть забот по управлению осветительными приборами, климатическим оборудованием или системами вентиляции, с получением весьма впечатляющего эффекта экономии электроэнергии. Появляется возможность производить в заданное время необходимые действия с бытовыми электрическими приборами даже в отсутствие хозяев или без их вмешательства. Одним словом, реле времени способны значительно упростить жизнь владельцам дома.


Электромеханическое аналоговое реле времени в корпусе под установку на стандартную DIN-рейку. Даже внешне некоторые приборы такого предназначения напоминают обычные часы.

Это была, так сказать, общая информация. А теперь перейдем к более пристальному рассмотрению разнообразия этих устройств и алгоритмов их работы.

Понравилась статья? Поделиться с друзьями:
Строй-Инвест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: