Введение
Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах: — Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;
— приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;
Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.
За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.
Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).
Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.
Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.
Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.
В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.
Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.
Расход теплоносителя через 1м.п. чугунных радиаторов
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.3, стр. 47 |
Определим расход теплоносителя через одну секцию чугунного радиатора кг/ч
35:10 = 3,5 кг/ч расход теплоносителя через одну секцию (G), где:
10 шт. – количество секций в 1 м.п. радиатора;
35 кг/ч – расход теплоносителя через 1м.п. радиатора.
Расход теплоносителя через 1м.п. отопительных приборов
Расчетная площадь нагревательной поверхности секционных радиаторов Fp в зависимости от числа секций в радиаторе | |||||
ЧислосекцийNi | Радиатор | ||||
М-140-АО | М-140 (М-140-А) | М-140-АО-300 | М-90 | РД-90с | |
Площадь нагревательной поверхности одной секции, экм | |||||
0,35 | 0,31 | 0,217 | 0,26 | 0,275 | |
2 | 0,84 | 0,76 | 0,59 | 0,67 | 0,70 |
3 | 1,18 | 1,07 | 0,80 | 0,93 | 0,97 |
4 | 1,52 | 1,37 | 1,01 | 1,18 | 1,25 |
5 | 1,84 | 1,67 | 1,22 | 1,43 | 1,50 |
6 | 2,16 | 1,98 | 1,43 | 1,68 | 1,73 |
7 | 2,54 | 2,26 | 1,64 | 1,93 | 2,01 |
8 | 2,82 | 2,52 | 1,85 | 2,19 | 2,28 |
9 | 3,15 | 2,83 | 2,06 | 2,44 | 2,56 |
10 | 3,49 | 3,1 | 2,27 | 2,69 | 2,80 |
11 | 3,82 | 3,39 | 2,47 | 2,94 | 3,05 |
12 | 4,12 | 3,68 | 2,68 | 3,19 | 3,30 |
13 | 4,45 | 3,96 | 2,89 | 3,45 | 3,57 |
14 | 4,77 | 4,26 | 3,10 | 3,70 | 3,86 |
15 | 5,08 | 4,58 | 3,31 | 3,95 | 4,06 |
16 | 5,42 | 4,82 | 3,52 | 4,20 | 4,32 |
17 | 5,73 | 5,09 | 3,73 | 4,45 | 4,54 |
18 | 6,05 | 5,39 | 3,94 | 4,71 | 4,80 |
19 | 6,37 | 5,67 | 4,15 | 4,96 | 5,07 |
20 | 6,70 | 5,96 | 4,36 | 5,21 | 5,33 |
21 | 7,01 | 6,24 | 4,57 | 5,46 | 5,59 |
22 | 7,34 | 6,58 | 4,78 | 5,71 | 5,85 |
23 | 7,65 | 6,81 | 4,99 | 5,97 | 6,11 |
24 | 7,99 | 7,10 | 5,20 | 6,22 | 6,37 |
24 | 8,31 | 7,38 | 5,41 | 6,47 | 6,57 |
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.13, стр. 67 |
Красным цветом выделены данные по радиаторам 1-го (7 секций), зеленым — 2-го (8 секций), синим — 3-го (9 секций) типов.
Определим расчетную формулу плотности теплового потока на 1 экм нагревательной поверхности отопительных чугунных радиаторов Gотн / Fp ≤ 7 или
Gотн / Fp ≥ 7
Радиаторы М-140-АО 7 секций (4 радиатора)
Gотн / Fp = (3,5 х 7) : 17,4 : 2,54 = 0,55
Итого: 0,55 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 7 = 24,5 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,05 х ((95,0 + 70,0):2 -20)1,32 = 422,5 Ккал/(ч·экм)
0,35х7 = 2,45 экм
422,5х2,45 х4 = 4140,5 Ккал/ч
Радиаторы М-140-АО 8 секций (1 радиатор)
Gотн / Fp = (3,5 х
Итого: 0,57 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 8 = 28 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)
0,35х8 = 2,8 экм
426,5х2,8 х1 = 1194,2 Ккал/ч
Радиаторы М-140-АО 9 секций (1 радиатор)
Gотн / Fp = (3,5 х 9) : 17,4 : 3,15 = 0,57
Итого: 0,57 < 7
Полученное значение меньше 7, дальнейший расчет выполним по формуле из таблицы ниже.
Вычислим теплопередачу чугунных радиаторов.
3,5 х 9 = 31,5 кг/ч расход воды в радиаторе
qэ = 1,89/φ ·∆tср1,32 = 1,89/1,04 х ((95,0 + 70,0):2 -20)1,32 = 426,5 Ккал/(ч·экм)
0,35х9 = 3,15 экм
426,5х3,15 х1= 1343,5 Ккал/ч
Суммарная тепловая нагрузка по радиаторам М-140-АО
Qр.от.= 4140,5+1194,2 +1343,5 =6678,2 Ккал/ч
Расчетная формула плотности теплового потока на 1 экм нагревательной поверхности отопительных приборов:
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), таблица 12.8, стр. 52 |
Посмотреть: тепловые нагрузки на отопление админ здания
Коэффициент φ, учитывающий расход воды в систему:
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 48 |
Тепловые нагрузки — определение и характеристики
Что обычно подразумевают под термином «тепловая нагрузка на отопление»? Это количество теплоты, которое отдают все приборы отопления, установленные в здании. Чтобы избежать лишних трат на производство работ, а также покупку ненужных приборов и материалов, и необходим предварительный расчет. С его помощью можно отрегулировать правила установки и распределения теплоты по всем помещениям, причем сделать это можно экономично и равномерно.
Но и это еще не все. Очень часто специалисты проводят расчеты, полагаясь на точные показатели. Они касаются размеров дома и нюансов строительства, где учитывается разнообразие элементов здания и их соответствие требованиям теплоизоляции и прочего. Именно точные показатели дают возможность правильно сделать расчеты и, соответственно, получить максимально приближенные к идеалу варианты распределения тепловой энергии по помещениям.
Но нередко случаются ошибки в расчетах, что приводит к неэффективной работе отопления в целом. Подчас приходится переделывать в ходе эксплуатации не только схемы, но и участки системы, что приводит к дополнительным расходам.
Какие же параметры влияют на расчет тепловой нагрузки в целом? Здесь необходимо разделить нагрузку на несколько позиций, куда входят:
Основные характеристики
Профессионалы не упускают из виду ни одну мелочь, которая может повлиять на правильность расчета
Отсюда и достаточно больший список характеристик системы отопления, которые следует принимать во внимание. Вот только некоторые из них:
Назначение объекта недвижимости или его тип. Это может быть жилое здание или промышленное. У поставщиков тепловой энергии есть нормы, которые распределяются по типу зданий. Именно они часто становятся основополагающими при проведении расчетов.
Архитектурная часть здания. Сюда можно включить ограждающие элементы (стены, кровля, перекрытия, полы), их габаритные размеры, толщину
Обязательно учитываются всевозможные проемы — балконы, окна, двери и прочее
Очень важно принять во внимание наличие подвалов и чердаков.
Температурный режим для каждого помещения в отдельности. Это очень важно, потому что общие требования к температуре в доме не дают точной картины распределения тепла.
Назначение помещений
В основном это относится к производственным цехам, в которых необходимо более строгое соблюдение температурного режима.
Наличие специальных помещений
К примеру, в жилых частных домах это могут быть бани или сауны.
Степень технического оснащения. Учитывается наличие системы вентиляции и кондиционирования, горячего водоснабжения, тип используемого отопления.
Количество точек, через которые проводится отбор горячей воды. И чем больше таких точек, тем большей тепловой нагрузке подвергается система отопления.
Количество находящихся на объекте людей. От этого показателя зависят такие критерии, как влажность внутри помещений и температура.
Дополнительные показатели. В жилых помещениях можно выделить количество санузлов, отдельных комнат, балконов. В промышленных зданиях — количество смен работающих, число дней в году, когда работает сам цех в технологической цепочке.
Расчет тепловых нагрузок на отопление проводят еще на стадии проектирования здания. Но при этом обязательно учитывают нормы и требования различных стандартов.
К примеру, теплопотери ограждающих элементов здания. Причем в расчет берутся все помещения в отдельности. Далее, это мощность, которая необходима для нагрева теплоносителя. Приплюсуем сюда количество тепловой энергии, требующейся для нагрева приточной вентиляции. Без этого расчет будет не очень точным. Прибавим также энергию, которая затрачивается на обогрев воды для бани или бассейна
Специалисты обязательно принимают во внимание и дальнейшее развитие теплосистемы. Вдруг через несколько лет вам вздумается устроить в собственном частном доме турецкий хамам
Поэтому необходимо прибавить к нагрузкам несколько процентов — обычно до 10%.
Рекомендация! Рассчитывать тепловые нагрузки с «запасом» необходимо для загородных домов. Именно запас позволит в будущем избежать дополнительных финансовых затрат, которые часто определяются суммами в несколько нулей.
Нагрузки на ГВС, вентиляцию
Тепловой пункт Свежий воздух необходим для жизнедеятельности человека, потому системы вентиляции и требуются. Однако, вентиляция значительно увеличивает теплопотери.
Компенсация потерь значительно увеличивает общую тепловую нагрузку. Учитывается на этапе проектирования, расчетов. Формула:
Q=qV(tн.-tв.)
V – общий объём здания по внешнему контуру,
t (н и в) – наружная, внутренняя температура воздуха;
q – удельная величина.
Формула для расчётов снабжения здания горячей водой:
Q=0,042rВ*∆T*P*G
∆T – разница температур воды;
P – количество потребителей (раковин);
В – отношение нагрузок по ГОСТу;
r – плотность воды.
Варианты приблизительных расчетов
Выполнить точный расчет тепловой мощности системы отопления довольно сложно, его могут сделать только профессионалы, имеющие соответствующую квалификацию и специальные знания. По этой причине данные вычисления обычно поручают специалистам.
В тоже время существуют и более простые способы, позволяющие приблизительно оценить величину требуемой тепловой энергии и их можно сделать самостоятельно:
- Нередко применяют расчет мощности отопления по площади (детальнее: «Расчет отопления по площади — определяем мощность отопительных приборов «). Считается, что жилые дома возводятся по проектам, разработанным с учетом климата в определенном регионе, и что в проектных решениях заложено использование материалов, которые обеспечивают требуемый тепловой баланс. Поэтому при расчете принято умножать величину удельной мощности на площадь помещений. Например, для Московского региона данный параметр находится в пределе от 100 до 150 ватт на один «квадрат».
- Более точный результат будет получен, если учитывать объем помещения и температуру. Алгоритм вычисления включает высоту потолка, уровень комфорта в отапливаемом помещении и особенности дома.
Используемая формула выглядит следующим образом: Q = VхΔTхK/860, где: V – объем помещения; ΔT – разница между температурой внутри дома и снаружи на улице; К – коэффициент теплопотерь.
Поправочный коэффициент позволяет учесть конструктивные особенности объекта недвижимости. Например, когда определяется тепловая мощность системы отопления здания, для строений с обычной кровлей из двойной кирпичной кладки К находится в диапазоне 1,0–1,9.
Метод укрупненных показателей. Во многом похож на предыдущий вариант, но его применяют для вычисления тепловой нагрузки для систем отопления многоквартирных зданий или других больших объектов.
Все три вышеперечисленные способы, позволяющие сделать расчет необходимой теплоотдачи, дают приблизительный результат, который может отличаться от реальных данных или в меньшую, или в большую сторону. Понятно, что монтаж маломощной отопительной системы не обеспечит требуемую степень обогрева.
В свою очередь, избыток мощности у отопительного оборудования приведет к быстрому износу приборов, перерасходу топлива, электроэнергии, а соответственно и денежных средств. Подобные расчеты обычно применяют в несложных случаях, например, при выборе котла.
Исходные данные для проектирования системы отопления
Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.
План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему
Он должен содержать внутренние и наружные размеры каждого помещения, окон, наружных дверных проёмов. Внутренние двери остаются без внимания, поскольку на тепловые потери они не оказывают никакого влияния.
Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.
В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).
После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.
Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика
Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.
Характеристики объекта для расчета тепловых нагрузок
Правильно рассчитанную тепловую нагрузку в отоплении можно определить при условии, что в процессе расчета учтено абсолютно все, даже самые мелкие нюансы.
Список деталей и параметров достаточно обширен:
назначения и типа имущества
Для расчета важно знать, какое здание будет отапливаться: жилое или нежилое, квартира (также читайте: «Квартирный теплосчетчик»). Тип здания зависит от нормы нагрузки, определяемой компаниями, поставляющими тепло, и, соответственно, стоимости теплоснабжения;
архитектурные особенности
Учитываются такие размеры наружных ограждений, как стены, потолки, полы, а также размеры оконных, дверных и балконных проемов. Важным считается этажность здания, а также наличие подвалов, чердаков и присущие им характеристики;
температурный режим для каждой комнаты в доме. Температура подразумевается для комфортного пребывания людей в жилом помещении или административном здании (читайте: «Тепловой расчет помещения и всего здания, формула теплопотерь»);
конструктивные особенности наружных ограждений, в том числе толщина и тип строительных материалов, наличие слоя теплоизоляции и используемые для этого изделия;
назначение помещения. Эта характеристика особенно важна для производственных складов, в которых для каждого цеха или участка необходимо создавать определенные условия по обеспечению температурного режима;
наличие специальных помещений и их характеристики. Это касается, например, бассейнов, теплиц, ванных комнат и т д;
степень обслуживания. Наличие/отсутствие горячего водоснабжения, централизованного отопления, системы кондиционирования и т.п;
количество точек забора нагретого теплоносителя. Чем их больше, тем больше тепловая нагрузка, оказываемая на всю отопительную конструкцию;
количество людей, находящихся в здании или проживающих в доме. От этого значения напрямую зависят влажность и температура, которые учитываются в формуле расчета тепловой нагрузки;
другие особенности объекта. Если это производственное здание, то это может быть количество рабочих дней в течение календарного года, количество работающих в смену. Для частного дома учитывают, сколько в нем проживает человек, сколько комнат, санузлов и т д
Расход теплоносителя через 1м.п чугунных радиаторов
Пособие конструктора «Сантехнические внутренние устройства» (И.Г. Староверов, 1975), таблица 12.3, стр. 47 |
Определим расход теплоносителя через одну секцию чугунного радиатора кг/ч
35:10 = 3,5 кг / ч теплового векторного потока через сечение (G), где:
10 кусочков. — количество секций в радиаторе 1 п.м;
35 кг / ч — расход хладагента через радиатор на 1 мп.
Расход теплоносителя через 1м.п отопительных приборов
Расчетная площадь поверхности нагрева модульных радиаторов Fp исходя из количества секций в радиаторе | |||||
Числоni секции | Радиатор | ||||
М-140-АО | М-140 (М-140-А) | М-140-АО-300 | М-90 | РД-90 | |
Поверхность нагрева секции, ecm | |||||
0,35 | 0,31 | 0,217 | 0,26 | 0,275 | |
2 | 0,84 | 0,76 | 0,59 | 0,67 | 0,70 |
3 | 1.18 | 1.07 | 0,80 | 0,93 | 0,97 |
4 | 1,52 | 1,37 | 1.01 | 1.18 | 1,25 |
5 | 1,84 | 1,67 | 1,22 | 1,43 | 1,50 |
6 | 2,16 | 1,98 | 1,43 | 1,68 | 1,73 |
7 | 2,54 | 2,26 | 1,64 | 1,93 | 2,01 |
восемь | 2,82 | 2,52 | 1,85 | 2,19 | 2,28 |
девять | 3,15 | 2,83 | 2,06 | 2,44 | 2,56 |
10 | 3,49 | 3.1 | 2,27 | 2,69 | 2,80 |
одиннадцать | 3,82 | 3,39 | 2,47 | 2,94 | 3,05 |
12 | 4,12 | 3,68 | 2,68 | 3,19 | 3,30 |
13 | 4,45 | 3,96 | 2,89 | 3,45 | 3,57 |
14 | 4,77 | 4,26 | 3.10 | 3,70 | 3,86 |
15 | 5,08 | 4,58 | 3,31 | 3,95 | 4.06 |
16 | 5,42 | 4.82 | 3,52 | 4.20 | 4,32 |
17 | 5,73 | 5,09 | 3,73 | 4,45 | 4,54 |
18 | 6,05 | 5,39 | 3,94 | 4,71 | 4,80 |
19 | 6,37 | 5,67 | 4,15 | 4,96 | 5,07 |
ветры | 6,70 | 5,96 | 4,36 | 5.21 | 5,33 |
21 год | 7.01 | 6,24 | 4,57 | 5,46 | 5,59 |
22 | 7,34 | 6.58 | 4,78 | 5,71 | 5,85 |
23 | 7,65 | 6,81 | 4,99 | 5,97 | 6,11 |
24 | 7,99 | 7.10 | 5.20 | 6,22 | 6,37 |
24 | 8.31 | 7,38 | 5,41 | 6,47 | 6.57 |
Пособие конструктора «Внутренние сантехнические устройства» (И.Г. Староверов, 1975), таблица 12.13, стр. 67 |
Данные по 1-му (7 секций) радиаторам выделены красным цветом, зеленым — 2-м (8 секций), синим — 3-м (9 секций) типам.
Определяем расчетную формулу плотности теплового потока на 1 ЭЦМ поверхности нагрева нагревательных чугунных радиаторов Gотн / Fp ≤ 7 o
Grel / Fp ≥ 7
Радиаторы М-140-АО 7 секций (4 радиатора)
Grel / Fp = (3,5 x 7): 17,4: 2,54 = 0,55
Итого: 0,55 <7
Полученное значение меньше 7, дальнейшие расчеты будут производиться по формуле из таблицы ниже.
Рассчитываем теплоотдачу чугунных радиаторов.
3,5 х 7 = 24,5 кг / час расхода воды в радиаторе
qe = 1,89 / φ ∆tav1,32 = 1,89 / 1,05 x ((95,0 + 70,0): 2-20) 1,32 = 422,5 Ккал / (ч
0,35×7 = 2,45 см
422,5 х 2,45 х 4 = 4140,5 Ккал / ч
Радиаторы М-140-АО 8 секций (1 радиатор)
Grel / Fp = (3,5 x : 17,4: 2,82 = 0,57
Итого: 0,57 <7
Полученное значение меньше 7, дальнейшие расчеты будут производиться по формуле из таблицы ниже.
Рассчитываем теплоотдачу чугунных радиаторов.
3,5 х 8 = 28 кг / час расхода воды в радиаторе
qe = 1,89 / ∆tav1,32 = 1,89 / 1,04 x ((95,0 + 70,0): 2-20) 1,32 = 426,5 Ккал / (ч
0,35×8 = 2,8 см
426,5 х 2,8 х1 = 1194,2 Ккал / ч
Радиаторы М-140-АО 9 секций (1 радиатор)
Grel / Fp = (3,5 x 9): 17,4: 3,15 = 0,57
Итого: 0,57 <7
Полученное значение меньше 7, дальнейшие расчеты будут производиться по формуле из таблицы ниже.
Рассчитываем теплоотдачу чугунных радиаторов.
3,5 х 9 = 31,5 кг / час расхода воды в радиаторе
qe = 1,89 / ∆tav1,32 = 1,89 / 1,04 x ((95,0 + 70,0): 2-20) 1,32 = 426,5 Ккал / (ч
0,35×9 = 3,15 см
426,5 х 3,15 х1 = 1343,5 Ккал / ч
Суммарная тепловая нагрузка на радиаторы М-140-АО
Qp.f. = 4140,5 + 1194,2 + 1343,5 = 6678,2 Ккал / ч
Расчетная формула плотности теплового потока на 1 экв. М поверхности нагрева нагревательных приборов:
Пособие конструктора «Внутренние сантехнические устройства» (И.Г. Староверов, 1975), таблица 12.8, стр. 52 |
Вид: Тепловые нагрузки для управления отопительным зданием
Коэффициент φ, учитывающий расход воды в системе:
Пособие конструктора «Внутренние сантехнические устройства» (И.Г. Староверов, 1975), с. 48 |
Что это такое
Термин, в сущности, интуитивно-понятный. Под тепловой нагрузкой подразумевается то количество тепловой энергии, которое необходимо для поддержания в здании, квартире или отдельном помещении комфортной температуры.
Максимальная часовая нагрузка на отопление, таким образом – это, то количество тепла, которое может потребоваться для поддержания нормированных параметров в течение часа в наиболее неблагоприятных условиях.
Какие условия считать неблагоприятными? Вопрос неразрывно связан с тем, от чего, собственно, зависит тепловая нагрузка.
Факторы
Итак, что влияет на потребность здания в тепле?
- Материал и толщина стен. Понятно, что стена в 1 кирпич (25 сантиметров) и стена из газобетона под 15-сантиметровой пенопластовой шубой пропустят ОЧЕНЬ разное количество тепловой энергии.
- Материал и структура кровли. Плоская крыша из железобетонных плит и утепленный чердак тоже будут весьма заметно различаться по теплопотерям.
- Вентиляция — еще один важный фактор. Ее производительность, наличие или отсутствие системы рекуперации тепла влияют на то, сколько тепла теряется с отработанным воздухом.
- Площадь остекления. Через окна и стеклянные фасады теряется заметно больше тепла, чем через сплошные стены.
Стены дома на фото зачернены именно для того, чтобы поглощать как можно больше солнечного тепла.
- Дельта температур между помещением и улицей определяет тепловой поток через ограждающие конструкции при постоянном сопротивлении теплопередаче. При +5 и -30 на улице дом будет терять разное количество тепла. Уменьшит, разумеется, потребность в тепловой энергии и снижение температуры внутри здания.
- Наконец, в проект часто приходится закладывать перспективы дальнейшего строительства. Скажем, если текущая тепловая нагрузка равна 15 киловаттам, но в ближайшем будущем планируется пристроить к дому утепленную веранду — логично приобрести бытовой отопительный котел с запасом по тепловой мощности.
Распределение
В случае водяного отопления пиковая тепловая мощность источника тепла должна быть равна сумме тепловой мощности всех отопительных приборов в доме. Разумеется, разводка тоже не должна становиться узким местом.
Распределение отопительных приборов по помещениям определяется несколькими факторами:
- Площадью комнаты и высотой ее потолка;
- Расположением внутри здания. Угловые и торцевые помещения теряют больше тепла, чем те, которые расположены в середине дома.
- Удаленностью от источника тепла. В индивидуальном строительстве этот параметр означает удаленность от котла, в системе центрального отопления многоквартирного дома — тем, подключена батарея к стояку подачи или обратки и тем, на каком этаже вы живете.
Как распределятся температуры в случае верхнего розлива — догадаться тоже нетрудно.
- Желаемой температурой в помещении. Помимо фильтрации тепла через внешние стены, внутри здания при неравномерном распределении температур тоже будет заметна миграция тепловой энергии через перегородки.
Рекомендованные СНиП значения таковы:
- Для жилых комнат в середине здания — 20 градусов;
- Для жилых комнат в углу или торце дома — 22 градуса. Более высокая температура, среди прочего, препятствует промерзанию стен.
- Для кухни — 18 градусов. В ней, как правило, есть большое количество собственных источников тепла — от холодильника до электроплиты.
- Для ванной комнаты и совмещенного санузла нормой являются 25С.
В случае воздушного отопления тепловой поток, поступающий в отдельную комнату, определяется пропускной способностью воздушного рукава. Как правило, простейший метод регулировки — ручная подстройка положений регулируемых вентиляционных решеток с контролем температур по термометру.
Наконец, в случае, если речь идет о системе обогрева с распределенными источниками тепла (электрические или газовые конвектора, электрические теплые полы, масляные радиаторы отопления, инфракрасные обогреватели и кондиционеры) необходимый температурный режим просто задается на термостате. Все, что требуется от вас — обеспечить пиковую тепловую мощность приборов на уровне пика теплопотерь помещения.
Электрические радиаторы и конвектора снабжаются термостатами. Средняя тепловая мощность автоматически подгоняется по потребность помещения в тепле.
Температурные режимы помещений
Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них. Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.
Для помещений разнообразного назначения существуют эталонные стандарты температурных режимов жилых и нежилых помещений. Эти нормы закреплены в так называемых ГОСТах
Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.
Согласно регламенту санитарных нормативов и правил есть различие в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, а вот комнатная температура воздуха в зимний период обеспечивается системой отопления. То бишь нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.
В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате. Для нежилых помещений офисного типа площадью до 100 м 2 :
- оптимальная температура воздуха 22-24°С
- допустимое колебание 1°С
Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.
Комфортная температура помещения у каждого человека «своя». Кто-то любит чтобы было очень тепло в комнате, кому-то комфортно когда в комнате прохладно — это всё достаточно индивидуально
Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов. И всё же для конкретных помещений квартиры и дома имеем:
- жилая, в том числе детская, комната 20-22°С, допуск ±2°С
- кухня, туалет 19-21°С, допуск ±2°С
- ванная, душевая, бассейн 24-26°С, допуск ±1°С
- коридоры, прихожие, лестничные клетки, кладовые 16-18°С, допуск +3°С
Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п
Характеристики объекта для расчета
Для дома с большими стеклопакетами нужно более интенсивное отопление
Тепловая нагрузка на отопление и потеря тепла дома – не одно и то же. Техническое здание нет надобности отапливать так же интенсивно, как жилые помещения. Прежде чем приступать к расчетам, устанавливают следующее:
- Назначение объекта – жилой дом, квартира, школа, спортивный зал, магазин. Требования по обогреву разные.
- Особенности архитектуры – это размеры оконных и балконных проемов, устройство крыши, наличие чердаков и подвалов, этажность здания и прочее.
- Нормы температурного режима – для жилых комнат и офиса они разные.
- Назначение помещения – параметр важен для производственных сооружений, так как для каждого цеха или даже участка требуется разный температурный режим.
- Конструкция внешних ограждений – наружных стен и крыши.
- Уровень техобслуживания – наличие горячего водоснабжения уменьшает теплопотери, интенсивно работающая вентиляция повышает.
- Число людей, постоянно пребывающих в доме – например, воздействует на показатели температуры и влажности.
- Количество точек забора теплоносителя – чем их больше, тем значительнее теплопотери.
- Другие особенности – например, наличие бассейна, сауны, оранжереи или число часов, когда в здании находятся люди.
Общие принципы выполнения расчетов гкал
Расчет квт для отопления подразумевает выполнение специальных вычислений, порядок которых регламентирован особыми нормативными актами. Ответственность за них лежит на коммунальных организациях, которые способны помочь при выполнении данной работы и дать ответ касательно того, как рассчитать гкал на отопление и расшифровка гкал.
Безусловно, подобная проблема будет полностью исключена в случае наличия в жилом помещении счетчика на горячую воду, так как именно в этом приборе имеются уже заранее выставленные показания, отображающие полученное тепло. Умножив эти результаты на установленный тариф, модно получить конечный параметр расходуемого тепла.