Типы и принцип действия генераторов электрического тока

Параметры выбора генераторов для дома

Тип топлива

Наиболее часто применяются для дома дизельные и бензиновые генераторы (модели на газу рассматривать не будем в связи со сложностью их обслуживания и высокой мощностью, которая для дома не нужна):

  • Бензиновые. Бензиновые модели менее мощные, чем дизельные и стоят гораздо дешевле. Также они менее шумные (хотя тихими их не назовешь). Однако из-за относительно невысокой мощности (в сравнении с дизельными) их удобнее всего использовать лишь как резервный источник питания или брать на природу, чтобы пользоваться там электричеством. Если вам необходимо подстраховаться на случай отключения электроэнергии, то бензиновая модель — то, что нужно.
  • Дизельные. Дизельные агрегаты имеют больший ресурс, чем бензиновые и гораздо мощнее, что делает их весьма удобными для получения электроэнергии на строительном объекте, для запитки мощных приборов, например, сварочного аппарата. Однако такие модели стоят на порядок дороже бензиновых аналогов, да и сам дизель, как топливо, уже догнал по стоимости бензин, поэтому сэкономить не получится. Дизельные агрегаты стоит приобретать тем, кто планирует использовать устройство, как основной источник электричества, например, на даче или для работы на стройке.

Отметим также, что существуют бензиновые инверторные модели. Главное их преимущество — это компактность, небольшой вес и относительно невысокая шумность. Их можно даже брать с собой на природу. Но они практически все низкой мощности, поэтому в роли резервного питания не подойдут (разве что для холодильника и электроники). Также, если выйдет из строя управляющая плата, то замена ее будет стоит около 80 % стоимости всего генератора.

Мощность устройства

Выбор генератора по мощности осуществляется при условии, если известна общая мощность всех приборов, которые будут к нему подключаться. Если не планируется подключение электрокотла или мощного сварочного аппарата, тогда в большинстве случаев генератора мощностью до 3 кВт вполне хватит. Однако при использовании электрического отопления может понадобиться мощный трехфазный генератор до 10 кВт.

Напряжение

Генератор может иметь розетки, от которых можно запитать приборы следующего напряжения:

  • 220 В. Все стандартные бытовые электроприборы, которые есть в доме.
  • 380 В. Генератор с таким напряжением может понадобиться только для трехфазного отопления, сварочника, работающего от 380 В или зарядки современного электромобиля.
  • 12 В. Постоянный ток на выходе 12 В необходим автомобильным аккумуляторам, так что если планируете заряжать аккумулятор где-то в дороге, тогда берите модель с таким DC выходом.

Дополнительные функции

Некоторые модели генераторов могут быть оснащены дополнительными функциями, которые полезны в тех или иных случаях:

Автозапуск (ATS). Функция способна запускать генератор автоматически без действий со стороны человека. Она весьма удобна, если генератор устанавливается в качестве аварийного питания. При отключении подачи электричества в городской сети, генератор автоматически включится, приняв нагрузку от приборов на себя.

  • Электростартер. Электростартер позволяет запустить устройство простым нажатием на кнопку. При этом не нужно дергать за «шморгалку», хотя конечно она в каждом генераторе неизменно присутствует.
  • Счетчик моточасов. Счетчик показывает общий ресурс часов, отработанных устройством. Благодаря этому вы всегда будете знать, сколько двигатель в работе и пора ли проводить обслуживание. Также эта функция полезна, когда покупаете генератор «с рук» — точно знаете, сколько агрегат отработал.
  • USB-порт. При наличии такого разъема вы всегда сможете подзарядить свой смартфон или планшет. Однако во времена «пауэрбанков» данная функция не всегда актуальна и востребована.

Основные конструктивные элементы

В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.

Роторы изготавливаются явнополюсными или неявнополюсными.

  • Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
  • Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».

Схема включения синхронного генератора показана на рис. 1.

Синхронный генератор работает следующим образом. Ротор генератора приводится во вращение первичным двигателем с номинальной скоростью, которая поддерживается постоянной при помощи автоматического регулятора скорости первичного двигателя. Генератор возбуждают, подавая ток возбуждения/в в обмотку ротора.

Рекламные предложения на основе ваших интересов:

В синхронном генераторе, работающем под нагрузкой, магнитное поле статора, накладываюсь на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Воздействие намагничивающей силы якоря на магнитное поле возбуждения ротора генератора называется реакцией якоря.

Реакция якоря может быть поперечной или продольной. При поперечной реакции поле статора размагничивает набегающий край полюсов и намагничивает сбегающий край полюсов. Продольная реакция может быть продольно-размагничивающей или продольно-намагничивающей. В первом случае магнитный поток якоря направлен навстречу потоку полюсов вдоль их оси, во втором случае согласно потоку полюсов также вдоль их оси.

Реакция якоря зависит от характера нагрузки и оказывает большое влияние на работу синхронного генератора. При чисто активной нагрузке реакция якоря будет поперечной, а при чисто индуктивной и чисто емкостной нагрузках — соответственно продольно-размагничивающей и продольно-намагничивающей. Обыч-нЪ генераторы работают на смешанную нагрузку, чаще всего на индуктивную и активную.

Необходимость регулирования тока возбуждения вызывается частыми изменениями характера и величины нагрузки.

Режимы работы

Чтобы разобраться в особенностях функционирования автомобильного генератора, важно понять особенности каждого из режимов:

  • В процессе пуска двигателя главным потребителем электрической энергии выступает стартер. Особенностью режима является создание повышенной нагрузки, что приводит к уменьшению напряжения на выходе АКБ. Как следствие, потребители берут ток только с аккумулятора. Вот почему при таком режиме батарея разряжается с наибольшей активностью.
  • После завода двигателя автомобильный генератор переходит в режим источника питания. С этого момента устройство дает ток, который необходим для питания нагрузки в автомобиле и подзаряда АКБ. Как только аккумулятор набирает требуемую емкость, уровень зарядного тока снижается. При этом генератор продолжает играть роль главного источника питания.
  • После подключения мощной нагрузки, например, кондиционера, обогрева салона и прочих, скорость вращения ротора замедляется. В этом случае автомобильный генератор уже не способен покрыть потребности автомобиля в токе. Часть нагрузки перекладывается на АКБ, который работает в параллель с источником питания и начинает постепенно разряжаться.

https://youtube.com/watch?v=feRhd7xg6R0

Бестопливные генераторы своими руками


Генератор Хендершота Акула

Генераторы, работающие по принципу использования свободной энергии, с давних пор привлекали внимание многих естествоиспытателей. Разработкой бестопливных устройств занимались еще Тесла и другие знаменитые ученые

К настоящему времени придумано множество схем, работающих на различных энергетических принципах. Перечень этих приборов:

  • аппарат Хендершота;
  • генераторы Романова, Тариеля Канападзе и Адамса;
  • устройства Смита и Бедини.

Самостоятельную сборку такого генератора удобнее всего рассмотреть на примере макета Адамса.

Подготовительные операции


Схема генератора Адамса

Чтобы собрать устройство своими руками, потребуется подготовить множество исходных деталей:

  • магниты;
  • медные проводники;
  • две катушки;
  • листовая сталь (как средство для изготовления корпуса устройства);
  • болты, шайбы и шурупы.

Магниты выбираются равными по величине и по возможности больших размеров. В этом случае индукционное поле получается мощнее, а энергии будет вырабатываться намного больше.

Медные проводники подбираются таким образом, чтобы их сечение составляло порядка 1,25 мм. На их основе наматываются две катушки, которые иногда берутся от старых двигателей подходящего размера. При самостоятельной намотке внимательно следят за тем, чтобы витки ложились ровно в ряд впритирку один к другому. Вспомогательные детали потребуются для крепежа отдельных элементов сборного устройства.

Сборка


Сборка бестопливного генератора

Порядок сборки самодельного генератора:

  1. В магнитах просверливаются отверстия для крепления на катушках.
  2. Они поочередно фиксируются на каркасах болтами.
  3. Катушки с магнитами крепятся на заранее сваренной металлической раме таким образом, чтобы между их плоскостями оставался небольшой зазор.

Наличие зазора позволит магнитам свободно вращаться.

На этой стадии сборки агрегат уже готов к проверке. Для ее проведения достаточно вручную несколько раз провернуть магниты вокруг своей оси. При условии правильно собранной конструкции на концах закрепленных на раме обмоток появится напряжение.

Принцип действия индукционного генератора

Принцип действия индукционного генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле, или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле. Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нем индуктируется синусоидальная электродвижущая сила.

Индукционный генератор переменного тока

Это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока, например, за счет вращения проволочной катушки в магнитном поле, или, наоборот, за счет вращения магнита. До тех пор, пока силовые линии магнитного поля пересекают проводящую катушку, в ней индуцируется электрический ток. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.

Устройство индукционного генератора

По конструкции выделяют генераторы:

  • с неподвижными магнитными полюсами и вращающимся якорем,
  • с вращающимися магнитными полюсами и неподвижным статором.

Генераторы с неподвижными магнитными полюсами используются чаще, поскольку при неподвижной статорной обмотке нет необходимости снимать с помощью скользящих контактов (щеток) и контактных колец с ротора большой ток высокого напряжения. Статор (неподвижная часть) собирается из отдельных железных листов, изолированных друг от друга, а на внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора. Ротор (подвижная часть) обычно изготавливают из сплошного железа, а полюсные наконечники магнитных полюсов ротора собирают из листового железа. Для создания максимально возможной магнитной индукции при вращении между статором и полюсными наконечниками ротора желателен минимальный зазор, а геометрическую форму полюсных наконечников подбирают такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному. На сердечники полюсов садят катушки возбуждения, питаемые постоянным током, который подводится с помощью щеток к контактным кольцам, расположенным на валу генератора.

Электромеханический индукционный генератор

Магнитное поле в электромеханическом генераторе создается с помощью постоянного или электромагнита, переменная электродвижущая сила индуцируется в обмотке. В промышленных генераторах поле создается вращающимся магнитом, обмотки остаются неподвижными.

Генератор индукционного тока

Генераторы индукционного тока имеют широкую область применения: чаще всего их используют в местах, в которых требуется непрерывная подача электроэнергии, таких как медицинские учреждения, морозильные склады и т.п. также такие генераторы могут быть востребованы на строительных площадках и для электрификации загородных домов.

Генератор индукционного нагрева

Индукционный нагрев — это нагревание электропроводящих материалов электрическими токами, которые индуцируются переменным магнитным полем. Генераторы индукционного нагрева применяются для:

  • нагрева заготовок из магнитных материалов, в том числе для гибки и термообработки деталей,
  • термической обработки мелких и хрупких деталей,
  • поверхностной закалки изделий,
  • плавки, сварки и пайки металлов,
  • обеззараживания медицинского инструмента.  

Виды и их особенности

Современные модели бытовых электрогенераторов классифицируются по 3-м признакам:

  1. Синхронности.
  2. Типу используемого топлива.
  3. Назначению.


Бытовой переносной газовый электрогенератор мощностью 2 кВтИсточник alicdn.com

Разберем их особенности более подробно.

Синхронные и асинхронные

В зависимости от того, какой принцип лежит в работе, агрегаты разделяются на 2 вида:

Синхронные.

Главная специфика генераторов данного типа – прямая зависимость характеристик вырабатываемого тока от скорости вращения якоря. Благодаря этому возникает возможность точно задавать параметры выдаваемого электричества.

Работает по алгоритму:

  1. Ротор вращается от любого двигателя, например, турбины.
  2. На его обмотку подается постоянный ток.
  3. Возникающая при этом ЭДС генерирует переменное магнитное поле.
  4. Под его действием в статорной обмотке возникает ток.

Именно такого рода электрогенераторами оснащается большая часть электростанций.

Асинхронные.

Асинхронный генератор переменного тока – это, по сути, асинхронный электродвигатель, так как оба относятся к однотипным статорно-роторным устройствам. При этом чтобы мотор заработал в качестве электрогенератора, потребуется увеличить скорость вращения якоря до нужного значения.


Асинхронный двигатель легко переделывается в электрогенераторИсточник ytimg.com

Недостатки данного типа агрегатов выражаются в необходимости возбуждать обмотку после подключения реактивной нагрузки – ввиду роста стартовой нагрузки и последующего провала мощности. Кроме того, требуется точно подобранный конденсатор. В противном случае ток будет меньше, чем необходим или установка будет перегреваться.

Вид топлива

Для получения вращающего момента применяется ДВС. В нем тепловая энергия от сжигания топлива превращается в механическую энергию, которая в свою очередь передается на вращение вала ротора. Для этой цели применяются следующие виды энергоресурса:

Газ.

Особенности газовых агрегатов проявляются в следующем:

  1. Отсутствие загрязняющих окружающую среду выхлопов.
  2. Доступность и дешевизна топлива.
  3. Автоматическая подача и контроль уровня газа.

Недостаток выражается в необходимости обустройства отдельного теплого помещения под контролирующую аппаратуру. Более того, к газовому хранилищу предъявляются особые требования безопасности.


Автономная газовая электростанция для питания приборов частного домаИсточник ytimg.com

Простейшие дизельные генераторы переменного тока имеют следующий ряд плюсов:

  1. Доступность и дешевизна энергоресурса.
  2. Пожаро-взрывобезопасность, что особенно актуально в сравнении с газовыми моделями.
  3. Длительная работа без остановок и аварий с одного запуска.
  4. Возможность оснащения автозапуском.
  5. Долговечность.

Проблема дизельных агрегатов выражается в затрудненном запуске на морозе.

Бензин.

Преимущества бензиновых моделей выражаются в следующем:

  1. Малые размеры и вес установок.
  2. Доступность эксплуатации, обслуживания и ремонта.
  3. Оснащенность автоматической защитой.
  4. Минимальный уровень рабочего шума.
  5. Возможность использования в помещении.

Видео о том, что такое генератор и как он работает:

Главный минус проявляется в высокой цене топлива.

Назначение

По назначению электрогенераторы разделяются на 3 вида:

  • Бытовые. В зависимости от цели использования в быту применяются установки мощностью от 0,6 до 25-27 кВт. Ими снабжаются приборы, работающие в доме, гараже, придомовых постройках и на участке. Такие модели также берутся и на стройплощадку, и на отдых на природе.
  • Профессиональные. Мощность установок ограничивается номиналом в 100 кВт. Агрегат может использоваться на объектах как временно, так и постоянно.
  • Промышленные. Для питания мощного цехового оборудования применяются агрегаты мощностью более 100 кВт. Характеризуются большими габаритами, весом и сложностью в обслуживании.

Видео-пример изготовления генератора из асинхронного двигателя:

Коротко о главном

Электрогенератор работает по закону электромагнитной индукции – когда при пропускании переменного магнитного поля через неподвижный проводник возникает ток. Состоит агрегат из вращающегося от внешнего привода ротора и неподвижного статора в виде обмотки, с контактов которой в итоге снимается электроток.

Применяются электрогенераторы в различных сферах – и в быту, и в промышленности. Подключаться они могут вручную, автоматически и синхронно. Классифицируются по нескольким признакам:

  • Асинхронные и синхронные.
  • Газовые, дизельные и бензиновые.
  • Бытовые, профессиональные, промышленные.

Схема подключения

Для ввода в эксплуатацию однофазного генератора необходимо придерживаться нескольких правил, особенно если устройство подключается к жилому дому своими руками.

Генератор в процессе установки необходимо защищать от влаги. При монтаже следует устранить выхлопы газа путем их отвода. При максимальных нагрузках можно использовать резервный источник. Для уменьшения затрат необходимо подбирать корректную схему монтажа. Обычно электрогенератор устанавливается после счетчика. Если существует нестабильная подача электрической энергии, нужно выбирать наиболее простые схемы.

Присоединение к распределительному автомату, если рядом есть рабочая заземленная розетка, будет оптимальным вариантом. Наличие трехпозиционного стационарного переключателя позволит подключить электрооборудование и не отсоединять провода от его зажимов. Ток по цепи может проходить от различных веток, при этом подключение нагрузки возможно лишь к одной. В целях исключения контактов проводов рекомендуется установить нейтральное положение. Однофазный генератор обладает собственным нолем, поэтому переключатель должен быть соответствующим.

При самостоятельном подключении нужно учитывать показатель мощности, типы потребителей энергии и двигателя. Однофазный генератор рекомендован для подсоединения приборов, которые рассчитаны на производительность от сети 220 вольт. Генерируемая таким устройством энергия в 10-15 киловатт позволит максимально покрыть потребности электроснабжения стандартного загородного дома. При этом вычисляется нужная мощность установки и общее домовое потребление электроэнергии при пиковой нагрузке.

Далее смотрите видеоурок о том, как подключить генератор к сети.

Виды генераторов переменного тока

Есть несколько типов классификации генераторов. Наиболее распространенный — по мощности. Они бывают маломощными и высокомощными. Для решения бытовых задач применяются компактная и маломощная электроустановки, которые обычно используется в качестве резервного источника питания.

В последнее время популярность обрели сварочные генераторы. С бензиновыми моделями следует быть осторожным, так как они должны использоваться только по своему прямому назначению. В противном случае их срок эксплуатации истечет намного раньше положенного. Диагностика и ремонт таких приборов — достаточно дорогостоящие, и чаще проще купить новый аппарат.

Вам это будет интересно Особенности магнитной ленты на электросчетчик

Еще одно разделение — асинхронные и синхронные генераторы. Они отличаются конструкцией ротора. В синхронном приборе катушка находится на роторе, а в асинхронном на валу есть специальные углубления, которые предназначены для вставки обмотки. Подробнее о них далее.


Маломощный генератор

Асинхронные генераторы

Асинхронные двигатели — это приборы, которые работают в тормозящем режиме. В данной ситуации ротор выполняет вращения только в одном направлении, совпадающем с движением магнитного поля, но немного опережает его.

Обратите внимание! Такие установки практически не подвержены коротким замыканиям и обладают повышенной защитой от воздействия внешних факторов. Асинхронный генератор. Асинхронный генератор


Асинхронный генератор

Синхронные генераторы

Синхронный двигатель — это электромеханизм, который работает в режиме генерации электрической энергии. Его особенность в том, что частота вращения стартера, а точнее его магнитного поля, равна частоте вращения ротора.

К сведению! Синхронные обладают роторами, которые выполнены в виде постоянных или электрических магнитах. Полюсов у них может быть и 2, и 4, и 6. Главное, чтобы это число было кратным двум.


Синхронный генератор

Применение генераторов переменного тока на практике

Промышленное производство мощных генераторов

Применяются такие генераторы практически во всех сферах человеческой деятельности, где требуется электрическая энергия. Причем принцип ее добычи отличается только способом приведения в движение вала устройства. Так работают и гидро-, и тепло- и даже атомные станции.

Данные станции запитывают по проводам общественные сети, к которым подключается конечный потребитель, то есть все мы. Однако существует множество объектов, к которым невозможно доставить электрическую энергию таким способом, например, транспорт, стройплощадки вдали от линий электропередач, очень далекие поселки, вахты, буровые установки и прочее.

Это означает только одно – требуется свой генератор и двигатель, приводящий его в движение. Давайте рассмотрим несколько небольших и часто встречающихся в нашей жизни устройств.

Автомобильные генераторы

На фото — электрический генератор для автомобиля

Кто-то возможно тут же скажет: «Как? Это же генератор постоянного тока!». Да, действительно, так оно и есть, однако таковым его делает лишь наличие выпрямителя, который этот самый ток делает постоянным. Основной принцип работы ничем не отличается – все тот же ротор, все тот же электромагнит и прочее.

Принципиальная схема автомобильного генератора

Это устройство функционирует таким образом, что вне зависимости от скорости вращения вала, оно вырабатывает напряжение в 12В, что обеспечивается регулятором, через который идет питание обмотки возбуждения. Обмотка возбуждения стартует, запитываясь от автомобильного аккумулятора, ротор агрегата приводится в движение двигателем автомобиля через шкив, после чего начинает индуцироваться ЭДС.

Для выпрямления трехфазного тока используется несколько диодов.

Принцип действия синхронного генератора. Системы возбуждения синхронного генератора

Принцип действия синхронного генератора

При подключении обмотки возбуждения к источнику постоянного напряжения, по ней пойдет ток возбуждения и создастся постоянный магнитный поток. При вращении ротора, от источника механической энергии, этот поток поочередно пересекает каждую из фаз обмоток статора и в каждой из обмоток индуктируется однофазная переменная ЭДС. При соединении обмотки статора в звезду, получим систему 3-х фазной переменной ЭДС.

Различают синхронные генераторы с:

А) возбудителями;

Б) самовозбуждением.

Возбудитель – генератор постоянного тока со смешенным возбуждением, якорь которого устанавливается на вал самого генератора (или изготавливается на одном волу с генератором), а корпус возбудителя крепится к корпусу синхронного генератора.

По схемам возбуждения синхронные генераторы делятся на генераторы с независимым возбуждением и генераторы с самовозбуждением.

При независимом возбуждении обмотка электромагнитов питается постоянным током от отдельной машины постоянного тока, соединенной с ротором генератора непосредственно либо посредством гибкой передачи, чаще всего клиноременной.

При самовозбуждении обмотка, питающая магнитные полюса, находится в одном магнитном поле с рабочей обмоткой генератора.

Наиболее распространенная схема возбуждения синхронных генераторов с независимым возбуждением.

Постоянный ток со щеток возбудителя поступает непосредственно в обмотку возбуждения генератора. Регулирование напряжения генератора осуществляется шунтовым реостатом в цепи возбуждения возбудителя (ШР), при увеличении сопротивления ШР уменьшается ток возбуждения возбудителя, что приводит к снижению напряжения на щетках возбудителя и, следовательно, к уменьшению тока возбуждения генератора и снижению напряжения на зажимах генератора.

Генераторы с самовозбуждением могут работать по двум схемам:

а) в синхронных машинах с вращающимся якорем — в пазах якоря укладывается дополнительная обмотка, присоединенная к специальному коллектору; постоянным током с коллектора по обычной схеме питается обмотка электромагнитов; в отдельных случаях дополнительная обмотка выполняется однофазной, и в последующем ток выпрямляется.

б) в синхронных машинах с неподвижным якорем и вращающимися полюсами постоянный ток для возбуждения генератора получают трансформированием рабочего напряжения и последующим выпрямлением тока.

1.10 Способы пуска синхронного электродвигателя.

Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного асинхронного двигателя. Однако этот способ ввиду его сложности и высокой стоимости используется очень редко. Обычно применяют так называемый асинхронный пуск синхронного двигателя. Для этой цели в полюсных наконечниках полюсов ротора укладывается дополнительная короткозамкнутая обмотка типа «беличьей клетки». Так как во время пуска в обмотке возбуждения двигателя наводится большая э. д. с. и напряжение на зажимах оказывается весьма значительным, то по соображениям безопасности она замыкается рубильником на сопротивление.

При подаче напряжения трехфазной сети к обмотке статора синхронного двигателя возникает вращающееся магнитное поле, которое, пересекая короткозамкнутую (пусковую) обмотку, заложенную в полюсных наконечниках ротора, индуктирует в ней токи. Эти токи, взаимодействуя с вращающимся полем статора, приведут ротор во вращение. При достижении ротором наибольшей скорости (95—97% синхронной скорости) рубильник переключают так, чтобы обмотку ротора включить в сеть постоянного напряжения.

Недостатком асинхронного пуска является большой пусковой ток (в 5—7 раз больше номинального тока). Пусковой ток мощных синхронных двигателей вызывает значительное падение напряжения в сети, а это отражается на работе других потребителей. Для уменьшения пускового тока применяют пуск при пониженном напряжении с помощью автотрансформатора.

В настоящее время применяют почти исключительно асинхрон­ный пуск синхронных двигателей ввиду его простоты и надежности. Существуют также схемы автоматического асинхронного пуска синхронных двигателей

Особенности установки генератора

Речь пойдёт не о подключении, а об установке ‒ организации места, где генератор тока будет работать. Нужна просторная твёрдая и ровная площадка. При установке на неровной поверхности, повышается уровень вибрации, что угрожает целостности оборудования. Если говорить о мощных дизельных установках, то для них желательно бетонное или асфальтовое покрытие, в общем, плотное и надёжное основание.

Площадка должна быть ровной

Подключение генератора проводят кабелем, в соответствии с рекомендациями производителей. Само подключение производится в шкафу, куда заводится кабель от генераторной установки. Он подключается после вводного автомата и счетчика.

Если генератор будет уставлен в помещении, в нем должна быть хорошая вентиляция. Планируя на время работы двигателя оставлять двери открытыми, нужна будет решётка, чтобы никто не попал внутрь во время работы станции.

Понравилась статья? Поделиться с друзьями:
Строй-Инвест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: