Электростанции различают по способу получения электроэнергии

Характеристики электростанций

Все электрические станции объединены и образуют Единую энергетическую группу, которую создали с целью более эффективного использования их мощностей, чтобы непрерывно снабжать потребителей электроэнергией. Основным элементом в устройстве считается электрогенератор, который выполняет определенные функции:

  • Гарантирует непрерывную работу одновременно с другими энергосистемами и обеспечивает энергией собственные автономные нагрузки.
  • Обеспечивает быстрое реагирование на наличие или отсутствие нагрузки, которая соответствует его номинальному значению. Производит запуск электродвигателя, обеспечивающего функционирование всей станции.
  • Совместно со специальным оборудованием выполняет защитные функции.

Каждый генератор отличается формами, размерами и источником энергии, который вращает вал. Кроме него, в станцию входят: турбины, котлы, трансформаторы, распределительное оборудование, технические средства коммутации, автоматика, релейная защита

Сейчас большое внимание уделяется выпуску более компактных установок

Щит управления

Потёртые ступени лестницы XIX столетия ведут в святая святых — к главному щиту управления ГЭС-1. На нём расположены приборы и ключи управления всеми распределительными устройствами станции. Здесь несут круглосуточное дежурство сотрудники ГЭС-1, отвечающие за её надёжную работу. Среди них и начальник смены станции, которого в шутку называют ночным директором.

Приборы показывают частоту сети, напряжение и нагрузку трансформаторов, параметры генераторов турбин, параметры воды, которая уходит в городские сети.

Задача сотрудников на щите управления — следить за состоянием главной электрической схемы и надёжной работой оборудования, чтобы всё было исправно. Если что-то пошло не так, загорятся сигнальные табло, указывающие на оборудование, в котором произошёл сбой.

Ветрогенераторы источников электроэнергии:

Ветрогенераторы являются одним из типов альтернативных источников электроэнергии. Они основываются на использовании энергии ветра для преобразования ее в электрическую энергию. Ветрогенераторы являются частью инфраструктуры ветровых ферм или могут быть использованы как отдельные установки для домашнего использования.

Принцип работы ветрогенераторов основан на использовании вращения лопастей или ротора при воздействии ветра. Ветер приходит в движение, и при этом энергия ветра передается лопастям. Лопасти или ротор ветрогенератора преобразуют кинетическую энергию вращения в механическую энергию вращения.

Механическая энергия вращения затем передается генератору электроэнергии, который преобразует ее в электрическую энергию. Этот процесс осуществляется благодаря вращению статора вокруг ротора. Статор содержит катушки проводов, в которых при вращении ротора индуцируется электрический ток.

Полученная электрическая энергия затем проходит через систему проводов и трансформаторов, чтобы быть подключенной к электрической сети или использоваться для питания отдельных устройств. Ветрогенераторы варьируются в размерах, начиная от небольших установок для домашнего использования до крупных ветровых ферм, состоящих из нескольких больших ветрогенераторов.

Преимущества ветрогенераторов включают их экологичность, поскольку они не производят выбросов вредных веществ во время производства электроэнергии. Они также являются возобновляемым источником энергии, так как ветер является неисчерпаемым ресурсом. Кроме того, ветрогенераторы способствуют уменьшению зависимости от исчерпаемых ископаемых топлива, таких как нефть и уголь.

Несмотря на это, ветрогенераторы также имеют некоторые недостатки. Они зависят от наличия ветра и не могут работать в условиях безветрия. Кроме того, ветрогенераторы могут вызывать шум и оказывать влияние на окружающую среду и животный мир, особенно при установке масштабных ветровых ферм.

Возобновляемые источники энергии:

Лесозаготовка. Древесина является возобновляемым природным ресурсом, но для ее возобновления требуется длительный период времени. В зависимости от типа древесины, лес восстанавливается в сроки от 50 до 100 лет. Неконтролируемая вырубка лесов на равнинах и холмистых участках приводит к их резкому сокращению. Это, в свою очередь, приводит к росту цен на древесину.

Геотермальная энергия — это тепло, идущее из Земли. На Земле хранится огромное количество энергии, не являющейся ископаемым топливом. Это известно как геотермальная энергия. С момента образования Земли происходил постоянный распад минералов, которые входили в ее состав. Многие из них радиоактивны по природе и выделяют большое количество тепла. Это тепло уносится к корке и находит выход, когда на поверхности Земли появляются трещины. Такие вентиляционные отверстия можно приспособить для выработки электроэнергии, что даст нам больше возобновляемых источников энергии.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Как заряжается конденсатор

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства

Полезные советы по эксплуатации электростанций

Капитальный ремонт проводите в строгом соответствии с допустимым моторесурсом модели. Перед каждым ее запуском удостоверяйтесь в уровне и качестве бензина и масла.

Если выявляется необходимость восполнения масла, то долив проводится только если двигатель выключен и уже успел остыть. Открывание крышки с маслоналивной горловины при запущенном моторе может привести к серьезным травмам и ожогам.

Используйте только те марки топлива и смазочных материалов, которые рекомендованы в технической документации к вашему агрегату. В нем же можно найти периодичность замены всех расходных средств.

Также периодически будет необходима замена воздушного и масляного фильтров, прочистка или установка новых свечей зажигания.

Некоторые модели электростанций могут выдавать ток и промышленного и бытового напряжения. Рекомендуется использовать его непосредственно для соответствующих приборов и не пытаться адаптировать устройство, работающее от 220 Вольт, под напряжение 380 Вольт и наоборот.

В ряде бензиновых электростанций присутствуют клеммы на 12 Вольт, позволяющие проводить зарядку аккумуляторных элементов. Но некоторые пользователи считают возможным использовать их в качестве источника питания для запуска автомобильных двигателей. Делать это категорически не рекомендуется в связи с тем, что в момент начала работы автомотора возникают высокие перепады токовых характеристик, которые приводят к выходу из строя генераторного блока.

Если вы планируете подключение электронно-вычислительной и других видов сложной бытовой техники, то желательно использование стабилизаторов напряжения, так как ток, вырабатываемый генератором, не всегда имеет устойчивые характеристики.

Источники

  • https://www.elec.ru/articles/elektrostanciya-opredelenie-i-vidy/
  • https://MadEnergy.ru/stati/tipy-elektrostantsiy.html
  • https://toolsai.ru/types-of-power-plants-table-types-of-electric-stations/
  • https://born-shop.ru/articles/stati-po-elektrooborudovaniyu/tipy-elektrostantsij.html
  • https://zen.yandex.ru/media/id/5d1503c8ac97b000b074dd7d/otkuda-beretsia-elektrichestvo-5d15c9e22adc8400aed517a2
  • https://ChernobylGuide.com/ru/preimushhestva_i_nedostatki_aes.html
  • https://electric-220.ru/news/vidy_ehlektrostancij/2019-04-06-1673
  • https://zen.yandex.ru/media/energetic/kakie-vidy-elektrostancii-suscestvuiut-5e244befa3f6e400b5c427c8

Преимущества и недостатки ветряных электростанций

К преимуществам ВЭС можно отнести:

  • независимость от ископаемых ресурсов;
  • используется абсолютно бесплатный источник энергии;
  • экологическая чистота методики — никакого вреда окружающей природе не наносится.

При этом, есть и недостатки:

  • неравномерность ветра создает определенные трудности в выработке энергии и вынуждает использовать большое число; аккумуляторных батарей;
  • ветряки издают шум при работе;
  • КПД ветряных электростанций низок, увеличить его очень сложно;
  • стоимость оборудования и, соответственно, электроэнергии, намного выше, чем цена сетевого электричества;
  • окупаемость оборудования с ростом его мощности значительно снижается. Наиболее производительные станции полностью не окупаются.

Использование небольших станций способно обеспечить энергией ограниченное количество потребителей, поэтому для крупных населенных пунктов или регионов требуются большие устройства. При этом, ветряки большой мощности нуждаются в соответствующих потоках ветра и равномерности его движения, что для условий нашей страны не характерно. В этом кроется основная причина низкого распространения ветряков по сравнению с европейскими странами.

Что такое альтернативная энергия?

Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).

Альтернативные источники энергии – это обычные природные явления, неисчерпаемые ресурсы, которые вырабатываются естественным образом. Такая энергия ещё называется регенеративной или «зелёной».

Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.

Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.

Ресурсы возобновляемой энергии

  • Солнечный свет
  • Водные потоки
  • Ветер
  • Приливы
  • Биотопливо (топливо из растительного или животного сырья)
  • Геотермальная теплота (недра Земли)

Самые мощные ТЭС

В настоящее время лидером тепловой энергетики по праву считается тепловая электростанция Туокетуо, находящаяся в Китае в провинции Внутренняя Монголия. До недавних пор она являлась лишь третьей в мире, уступая по мощности ТЭС, расположенным в Тайчжуне и Сургуте. В результате проведенной реконструкции в 2017 году добавились два энергоблока по 660 Мвт каждый, после чего общая мощность станции достигла 6720 мегаватт. После этого Сургутская ГРЭС стала занимать 3-е место в мире и 1-е – в России.

В российской Энергосистеме доля тепловых электростанций составляет около 70%, а общее количество в натуральных цифрах – 358 единиц. Самые крупные ТЭС расположены возле крупных месторождений полезных ископаемых, используемых в качестве топлива. Установки, применяющие мазут, привязаны к крупным нефтеперерабатывающим предприятиям.

Крупнейшей российской ТЭС является Сургутская, производительность которой составляет 5600 МВт. На карте географическое положение объекта определяется на примерно одинаковом расстоянии от Нефтеюганска и Ханты-Мансийска.

Строительство объекта началось в 1979 году, а в 1985 году был введен в эксплуатацию 1-й энергоблок. Далее за 3 года в строй вступили все оставшиеся энергоблоки, производительностью 800 МВт. Работа станции осуществляется на попутном газе, образованном в местах разрабатываемых газовых месторождений. Такой газ должен утилизироваться, однако он превратился в энергетический ресурс. К настоящему времени построены еще 2 энергоблока по 400 МВт, что позволило вывести станцию на проектную мощность.

Следует отметить еще одну крупную российскую ГРЭС – Рефтинскую. Она работает на каменном угле, а производительность составляет 3800 мегаватт. Объект расположен примерно в 100 км от Екатеринбурга. Строительство велось с 1963 по 1980 годы, в течение всего периода энергоблоки вводились в строй поэтапно.

Газотурбинная электростанция (ГТЭС)

Геотермальные электростанции (ГТЭС)

Электростанции России (ТЭС, ГЭС, ГАЭС, АЭС)

Волновая электростанция (ВЭС)

Ветряные электростанции

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Недостатки АЭС перед ТЭС

  1. Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно. 2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур. 3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.

Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).

Омы питающей сети

Внутреннее сопротивление источника электрической энергии учитывается для определения результирующей ЭДС. В общем виде электродвижущая сила рассчитывается по формуле E = I*R + I*r. Здесь R — сопротивление потребителей, а r — внутреннее сопротивление. Падение же напряжения высчитывают по следующей зависимости: U = E — Ir.

Ток, протекающий в цепи, рассчитывают согласно закону Ома полной цепи: I = E/(R + r). Внутреннее сопротивление способно оказывать влияние на силу тока. Чтобы такого не происходило, источник подбирают под нагрузку по следующему правилу: внутреннее сопротивление источника должно быть намного меньше полного общего сопротивления потребителей. Тогда учитывать его величину совсем необязательно из-за малой погрешности.

Атомные электростанции

На третьем месте по количеству производимой электроэнергии находятся атомные электростанции. В России их доля в энергетике составляет чуть выше 10%. В США этот показатель равен 20%, в Германии – более 30%, во Франции – свыше 75%. Сокращение программ в области атомной энергетики произошло вследствие аварии на Чернобыльской АЭС.

Рассматривая виды электростанций в России, следует отметить, что наиболее известными АЭС считаются Ленинградская, Курская, Смоленская, Нововоронежская, Белоярская и другие. Новым направлением является создание АТЭЦ – атомных теплоэлектроцентралей, вырабатывающих электрическую и тепловую энергию. Подобный объект построен на Чукотке в поселке Билибино. Еще одно направление – строительство АСТ – атомных станций теплоснабжения, предназначенных для производства тепла. Такие установки успешно функционируют в Нижнем Новгороде и Воронеже.

Основные плюсы АЭС заключаются в следующем:

  • Возможность строительства в любых районах, без привязки к энергетическим ресурсам. Транспортировка атомного топлива не отнимает много средств, поскольку 1 кг урана эквивалентен 2500 т угля.
  • При отсутствии нарушений эксплуатации, АЭС являются самыми экологичными установками. Выбросы в атмосферу минимальны, кислород не поглощается, отсутствует парниковый эффект.

Рассматривая вопрос как работает АЭС, нужно в первую очередь остановиться на тяжелых последствиях в случае аварий. Кроме того, серьезные проблемы возникают с радиоактивными отходами в процессе их захоронения. Водоемы, используемые для технических целей АЭС, подвержены тепловому загрязнению.

Перспективы развития возобновляемой энергетики

Перспективы развития возобновляемой энергетики в будущем являются очень обнадеживающими. С учетом того, что цены на технологии ВИЭ продолжают снижаться, возобновляемые источники энергии становятся все более доступными и экономически выгодными. В будущем можно ожидать, что доля возобновляемых источников энергии в производстве электроэнергии будет расти быстрее, чем доля традиционных источников, таких как нефть, газ и уголь.

Одним из основных изменений, которые можно ожидать в будущем, является увеличение масштабов использования возобновляемых источников энергии. Это позволит снизить зависимость от импорта традиционных источников энергии, что повысит энергетическую безопасность стран. Кроме того, это приведет к сокращению выбросов парниковых газов и других загрязняющих веществ, что положительно скажется на состоянии окружающей среды и здоровье людей.

Развитие возобновляемой энергетики также может привести к созданию новых рабочих мест и стимулированию экономического роста. Например, строительство и эксплуатация солнечных и ветровых электростанций требуют большого количества специалистов, что может увеличить занятость в этих отраслях.

Однако следует также отметить, что развитие возобновляемой энергетики также может повлечь за собой некоторые вызовы для общества. Например, производство и утилизация технологий, используемых в ВИЭ, могут иметь определенные негативные последствия для окружающей среды, если не будут приняты соответствующие меры по управлению отходами. Кроме того, развитие ВИЭ может потребовать больших инвестиций со стороны правительства и частного сектора, что может быть непросто в условиях экономической неопределенности.

В целом, можно сделать вывод, что развитие возобновляемой энергетики имеет значительный потенциал для того, чтобы положительно повлиять на экологические, социальные и экономические аспекты общества

Однако важно учитывать проблемы и вызовы, которые могут возникнуть на пути этого развития, и работать над их решением с учетом интересов всех заинтересованных сторон

Больше о возобновляемой энергетике: технологиях, тенденциях, передовом оборудовании; можно узнать на ежегодной выставке RENWEX, проходящей в ЦВК «Экспоцентр».

Возобновляемая энергия в мире

Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.

Германия

40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.

Исландия

У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.

Швеция

После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.

Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.

Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.

Китай

В Китае самая мощная ГЭС в мире – «Три ущелья». По состоянию на 2018 год – это крупнейшее по массе сооружение. Её сплошная бетонная плотина весит 65,5 млн тонн. За 2014 станция произвела рекордные для мира 98,8 млрд кВт⋅ч.

Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.

Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.


Рис. 1. В зависимости от видов энергии, преобразуемой в электрическую, источники разбивают на группы Рассмотрим подробнее эти виды.

Принцип работы катушки с магнитом

Протекающий ток через катушку вызывает появление переменного магнитного потока. Он, в свою очередь, оказывает на магниты выталкивающую силу, которая заставляет рамку с двумя разнополярными магнитами крутиться. Таким образом, источники электрической энергии служат узлом для движения авто.

Обратный процесс, когда рамка с магнитом вращается внутри обмоток, за счет кинетической энергии позволяет преобразовывать переменный магнитный поток в ЭДС катушек. Далее в цепи установлены стабилизаторы напряжения, обеспечивающие требуемые показатели питающей сети. По этому принципу вырабатывается электричество в гидроэлектростанциях, теплоэлектростанциях.

ЭДС в цепи появляется и в обычной замкнутой цепи. Она существует до тех пор, пока к проводнику приложена разность потенциалов. Электродвижущая сила нужна для описания характеристики источника энергии. Физическое определение термина звучит так: ЭДС в замкнутой цепи пропорциональна работе сторонних сил, осуществляющих перемещение одиночного положительного заряда через всё тело проводника.

Формула E = I*R — сопротивление учитывается полное, складывающееся из внутреннего сопротивления источника питания и результатов сложения сопротивления питаемого участка цепи.

Электростанция – что это такое?

Что такое электростанция достаточно хорошо известно из технической и научно-популярной литературы и со страниц сайтов. Она представляет собой комплекс зданий и сооружений, заполненных оборудованием, имеющим целью производство электрической и тепловой энергии.

Одна из первых российских электростанций «Электропередача», работавшая на торфе в начале XX века

Принцип работы станции заключается в последовательности проведения циклов преобразования: энергии первичных источников (в роли которых выступают топливо; энергия ветра, геотермальная, гидравлическая, ядерная и иные виды энергии) в энергию механическую, которая претерпевая ряд изменений, превращается в электроэнергию.

Хотя принцип и положен в основу абсолютного большинства электрических станций, но такое бывает отнюдь не всегда. В солнечных электростанциях, сделанных на основе солнечных батарей, выработка электроэнергии происходит напрямую под воздействием солнечного света.

Установка солнечных батарей на крыше жилого дома

В остальных же электростанциях генерация электроэнергии осуществляется за счёт вращения вала электромашинного генератора, приводимого в действие механической энергией.

Источники света Отопление дома от солнечных батарей

44629.06.2022

Основное оборудование электростанций

В список основного оборудования электростанций входят:

  • комплексы сооружений для приёма и первичной переработки топлива: газовое хозяйство, мазутное хозяйство, угольное хозяйство, а также сооружения для приёма воды или для её глубокой химической очистки;
  • котлы;
  • трубопроводы;
  • турбины;
  • системы охлаждения, оборудованные градирнями, воздушными конденсаторами и водоёмами;
  • дымовые трубы;
  • генераторы;
  • двигатели, совместно с насосами и вентиляторами;
  • трансформаторы;
  • распределительные устройства;
  • коммутирующая аппаратура в виде выключателей и разъединителей;
  • устройства релейной защиты и автоматики;
  • линии электропередач.

Стандартная схема мазутного хозяйства

Несмотря на значительное количество устройств, электростанция это – прежде всего генераторы.Они обеспечивают стабильную и надёжную работу энергосистем, что снабжают электроэнергией промышленные и сельскохозяйственные предприятия, транспорт и сферу жилищно-коммунального хозяйства; а также вырабатывают ту часть электроэнергии, которую потребляет на собственные нужды электрическая станция.

Генератор тепловой электростанции

Изменяя режим работы генератора, можно оперативно реагировать на рост или падение нагрузки. А при необходимости он может совместно с рядом устройств выполнять функцию защиты технологического оборудования.

Преимущества и недостатки гибридных энергетических систем

Гибридные энергетические системы, которые объединяют различные источники энергии, такие как солнечная, ветровая, гидроэнергия или традиционные источники энергии, такие как уголь или нефть, стали все более популярными в последние годы. Они могут обеспечивать надежную поставку электроэнергии и сокращение выбросов парниковых газов. Однако у этой технологии есть свои преимущества и недостатки.

Преимущества гибридных энергетических систем:

  1. Надежность: Главное преимущество гибридных систем — это надежность. Каждый тип источника энергии имеет свои ограничения в зависимости от времени суток, погодных условий или других факторов. Комбинация двух или более типов может помочь компенсировать ограничения каждого из них и обеспечить более стабильную поставку электроэнергии.
  2. Уменьшение затрат: Гибридные системы могут быть экономически выгодными благодаря использованию более чем одного источника энергии. В зависимости от региона и доступности различных источников, гибридные системы могут быть дешевле, чем обеспечение поставки электроэнергии только с помощью одного типа.
  3. Уменьшение выбросов парниковых газов: Использование возобновляемых источников энергии в гибридных системах может существенно снизить выбросы парниковых газов. Это в свою очередь может помочь уменьшить негативное воздействие на окружающую среду.

Недостатки гибридных энергетических систем:

  1. Высокая стоимость: Одним из основных недостатков гибридных систем является высокая стоимость начального инвестирования. Объединение нескольких различных источников энергии требует дополнительных устройств и специальной инфраструктуры, что может значительно повысить стоимость проекта.
  2. Сложность технического обслуживания: Гибридные системы могут быть сложными для технического обслуживания из-за наличия нескольких источников энергии. Это может потребовать дополнительных усилий и затрат на обучение персонала.
  3. Зависимость от погоды: Гибридные системы могут зависеть от погодных условий, особенно если включены возобновляемые источники энергии, такие как солнечная или ветровая энергия. Временные ограничения могут привести к необходимости использования традиционных источников энергии, что может уменьшить экологическую пользу гибридной системы.

Гибридные энергетические системы имеют свои преимущества и недостатки. Они могут быть надежными, экономически выгодными и помочь снизить выбросы парниковых газов. Однако, из-за высокой стоимости, сложности технического обслуживания и зависимости от погодных условий этот тип систем может не подходить для всех регионов или потребностей.

Преимущества и недостатки АЭС перед ГЭС

Преимущества и недостатки АЭС перед ГЭС связаны в основном с зависимостью ГЭС от природных ресурсов. Об этом подробнее…

  1. Преимущество АЭС перед гидроэлектростанциями – это теоретическая возможность строительства новых атомных станций, в то время как большинство рек и водоемов, способных работать на благо гидроэлектростанций, уже заняты. То есть открытие новых ГЭС затруднено из-за нехватки нужных мест.
    2. Следующие преимущества АЭС перед ГЭС – это непрямая зависимость от природных ресурсов. ГЭС напрямую зависят от природного водоема, АЭС же только косвенно – от добычи урана, все остальное обеспечивают сами люди и их изобретения.

Недостатки АЭС перед водными станциями незначительны — ресурсы, которые использует АЭС для ядерной реакции, а конкретно урановое топливо, является не возобновляемым. В то время как количество воды – основного возобновляемого ресурса ГЭС, от работы гидроэлектростанции никак не изменится, а уран сам по себе восстановиться в природе не может.

Ветряные электростанции

В последние годы во всем мире наблюдается быстрый рост числа ветряных электростанций, чему способствует технологический прогресс.

После того, как ветряные турбины построены, эксплуатационные расходы, связанные с обслуживанием ветряных электростанций, низки, и они обычно считаются относительно рентабельными.

Ветряные электростанции также могут быть построены на сельскохозяйственных угодьях, не прерывая сельскохозяйственных работ.

Но техническое обслуживание ветряных турбин может различаться, поскольку некоторые из них необходимо часто проверять, а ветроэнергетические проекты обычно требуют огромных капиталовложений.

Понравилась статья? Поделиться с друзьями:
Строй-Инвест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: