Что такое реле: разновидности, область использования, основные характеристики

Реле тока. виды и устройство. работа и как выбрать. применение

Устройство РП

Конструкция устройства зависит от производителя и может изменяться в соответствии с назначением. Стандартный прибор состоит из следующих узлов:

  • электромагнитная катушка с сердечником;
  • магнитопровод;
  • пружинный механизм;
  • группа контактов.

Обмотка катушки содержит большое количество витков изолированного медного провода. Внутри расположен металлический сердечник, который закреплен Г-образной пластиной (ярмо). Над катушкой установлена пластина или якорь. Он выполнен из металла и удерживается возвратной пружиной. Подвижные контакты закреплены на якоре. Пара неподвижных контактов расположена напротив. Сердечник и катушка вместе образуют электромагнит. Такие детали, как ярмо, сердечник, и якорь – это составные части магнитопровода.

РП могут быть рассчитаны как на постоянный, так и переменный ток, с напряжением от 12 до 220 вольт. Внешне приборы ничем не отличаются. Устройство, работающее на постоянном токе, имеет цельный магнитопровод. Если он набран из отдельных пластин, прибор предназначен для работы с переменным током не выше 10 ампер.

Для удобства монтажа устройства используют своеобразные колодки, что позволяет установить реле промежуточное на 220В на дин-рейку. В приспособлении имеются отверстия под контакты реле, а также контактные винты, чтобы подключить внешние проводники. Как входные, так и выходные контакты имеют одинаковую нумерацию.

Тестирование контактных групп

На последок не помешает прозвонить контактную группу. Разбираясь, для чего нужно реле, становится понятно, что это – электромеханический переключатель. При подаче тока, он замыкает два контакта и передает ток дальше. Выглядит это так.

Можно понять, что при разомкнутом положении, когда ток на реле не подается, контакты не должны между собой коротить в принципе. Когда электричество поступает наоборот, площадки соединяются между собой. Это и отражает диодная прозвонка.

Действуйте так:

  1. Щупами коснитесь пары. Устанавливать их нужно так же, как и раньше.
  2. Без подачи напряжения, тестер не должен издавать звуков в режиме прозвонки.
  3. Затем подайте напряжение и смотрите на прибор. Во-первых, должен появиться характерный громкий писк. Во-вторых, на экране забегают цифры.

Имейте в виду, что биперы могут ломаться. Поэтому до того, как прозвонить пятиконтактное реле – проверьте их. Можно просто коснуться щупами жала отвертки или закоротить их.

Импульсное реле и его устройство

Для того чтобы вы могли детально разобраться и понять устройство импульсного реле мы решили рассмотреть его работу на импульсном реле с лестничным автоматом BIS-403. Корпус этого устройства считается качественным, но его собирают без единого болтика. Все детали, которые в нем установлены, соединяются с помощью термического клея. На коробке, которую предоставляет производитель можно увидеть, что это устройство должно устанавливаться в монтажной коробке.

Это импульсное реле в первую очередь состоит из контроллера ST 78522. Также в нем имеется и стабилизатор напряжения на 5 Вольт. Также в его конструкции вы сможете найти выпрямители и диоды.

Это устройство должно управлять прохождением тока через обычное реле. Благодаря контактам, которые установлены в этом реле, можно определить коммутируемую мощность. Это устройство способно выдерживать нагрузку в 2 ампера. Если ваша нагрузка составляет больше чем 0.5 кВт, тогда вам потребуется установка дополнительного контактора. Для более надежной защиты вам потребуется установить автоматический выключатель.

Условия выбора реле

Рассматриваются условия подбора реле для защиты электродвигателей.

Реле максимального тока выбираются с учётом следующих основных условий:

  • номинальные токи реле и двигателя: Iном.р ≥ Iном.дв , Iном.р ≥ Iном.дв.25 (при защите двигателей, работающих в повторно-кратковременном режиме, принимает ток при ПВ = 25 %);
  • уставка по току срабатывания: Iуст ≥ (1,3 ÷ 1,5)Iпуск.дв (пусковой ток двигателя при защите АД с КЗ ротором); Iуст ≥ (2,25 ÷ 2,5)Iном.дв (при защите двигателей с фазным ротором); Iуст ≥ (1,25 ÷1,5)I‘ном.дв + Σ Iном.дв (при защите одним реле группы двигателей, где Iном.дв — номинальный ток двигателя наибольшей мощности);
  • коммутационная способность контактов реле должна обеспечивать питание катушек контактов и магнитных пускателей, с учётом их пусковых токов при включении.

Тепловые реле выбирают по основным условиям:

  • номинальные токи реле и двигателя: Iном.р = (1 ÷ 1,25)Iном.дв (при защите двигателей во взрывобезопасных помещениях); помещениях); Iном.р = Iном.дв (при защите во взрывоопасных помещениях);
  • соответствие класса отключения (расцепления) условиям пуска двигателя: для установленной кратности (A, B, C, D), соответствующей Iпуск.дв, верхняя границы ts должна превышать время пуска двигателя.

Реле минимального напряжения выбираются по основным условиям:

  • номинальные напряжения сети и реле: Uном.р = Uном.с ;
  • уставка реле по напряжению отпускания при необходимости обеспечить самозапуск двигателей в условиях значительного снижения напряжения сети (до 50 %): Uотп.р = (0, 6 ÷ 0, 7)Uном.с.

Технические параметры ряда реле приведены в таблице 1.

Таблица 1 – Параметры реле

Серия, тип реле Номинальное напряжение контактов, В Номинальный ток контактов, А Номинальный ток/напряжение обмотки (органа) реле, А/В Диапазон уставки входного параметра
РТ 40/2 (максимального тока) 220 0,2 (при 220 В) … 200 2,5 (6,3) А 0,5-1 (1-2) А
РТ 40/10 (максимального тока) 220 0,2 (при 220 В) … 200 16 А 2,5-5 (5-10) А
РТ 40/200 (максимального тока) 220 0,2 (при 220 В) … 200 16 А 50-100 (100-200) А
РТ40/Р5 (максимального тока трёхфазное) 220 2 5 А 0,65-1,3 (0,325-0,65) А
РН54/48 (минимального напряжения) 220 2 12-24 (24-48) В
РН54/160 (минимального напряжения) 220 2 40-80 (80-160) В
РНН 57 (напряжения нулевой последовательности) 220 2 100 В 4-8 В
РНФ 1М (напряжения обратной последовательности) 220 2 100 В 6-12 В
РМ 11-11(18) (направления мощности) 230 1 100 В, 1 (5) А 0,25 В; 0,05 А (0,25 А);

φ =-30о±5о и -45о±5о

М.Ч.

РМ 12-11(18) (направления мощности) 230 1 100 В, 1 (5) А (1,0±0,1), (2,0±0,2),

(3,0±0,3) В;

0,05 А (0,25 А);

φ =70о±5о

М.Ч.

РВ 01 (времени статическое на срабатывание) 230 2,5 100, 127, 220, 380 В (переменного),

110, 220 В (постоянного)

0,1-50 с
РВ 03 (времени статическое на отключение) 230 2,5 100, 127, 220, 380 В (переменного),

110, 220 В (постоянного)

0,15-30 с
РТЛ-1008-2-25А (перегрузки тепловое) класс 10А 230, 400, 690 2,5 25 А 2,5-4 А
РТЛ-1022-2-25А (перегрузки тепловое) класс 10А 230, 400, 690 15 25 А 17-25 А
РТЛ-3125-2-200А (перегрузки тепловое) класс 10А 230, 400, 690 70 200 А 80-125 А
OptiStart TU3/32-18 (перегрузки тепловое) класс 10А 24, 230, 400 1-3 18 А 13-18 А
OptiStart TUAT23-37 (перегрузки тепловое) класс 30 24, 230, 400 2-5 37 А 24-37 А
OptiStart TU800-800 (перегрузки тепловое) класс 10 24, 230, 400 1,5-4 800 А 540-800 А

Просмотров: 97

Основные достоинства реле

  1. не требуется оперативное питание (!) — реле питается от входного тока, вследствие чего обладает высокой помехоустойчивостью, и может применяться вместо реле РТ40, РТ140, РСТ-11, −12, −13, −14, −11М и др.;
  2. реле РСТ-40М1 выполнено в корпусе на DIN-рейку, так же возможно крепление на панель винтами;
  3. реле РСТ-40М1 выполнено на микроэлектронной элементной базе, поэтому в отличие от электромеханических реле обладает высокой виброустойчивостью и ударопрочностью, у него принципиально отсутствует вибрация контактов;
  4. коммутационная способность контактов реле позволяет действовать непосредственно на отключающую катушку выключателей;
  5. подготовка реле к работе требует всего одной операции по настройке тока срабатывания. При этом коэффициент возврата не менее 0,9 получается автоматически;

Разновидности модульных контакторов

Производители электрооборудования выпускают огромное изобилие всевозможных контакторов, отличающихся между собой не только по конструктивным, но и по техническим характеристикам, механической прочности, типу работы, сфере использования.

Технические характеристики, например, тип тока, разделяет модули на контакторы постоянного и переменного тока. Для коммутации постоянного тока применяют одно- и двухполюсные контакторы на максимальное напряжение 440 В и силу тока 80-630 А. Для цепей переменного тока выпускают трехполюсные устройства на ток 63-1000 А.

По типу работы отличают механические и электромагнитные контакторы. Сегодня наиболее широко в быту применяются вторые, благодаря своим достоинствам — отсутствию вибрации, бесшумности. Модульные контакторы имеют от одного до четырех полюсов, их так и называют одно- двухполюсный и так далее, при этом, они могут быть однофазными или двухфазными. Существуют модели с дополнительными контактами или без них, в этом тоже заключается существенное отличие приборов.

КУПИТЬ МОДУЛЬНЫЕ КОНТАКТОРЫ

Кроме контактной системы в модуль входит дугогасительная система. Гашение дуги происходит разными способами, в зависимости от этого различают контакторы одинарные с эффективным гашением дуги с помощью электромагнитного устройства, они применяется в цепях сложного промышленного или железнодорожного оборудования, в индукционных печах. А также сдвоенные контакторы, с двойным разрывом дуги, которые эксплуатируются в еще более тяжелых условиях.

Предприятия-изготовители выпускают разные типы контакторов, отличающиеся дополнениями и конструкцией:

  • пускатели (улучшенные типы контакторов с вспомогательными элементами);
  • магнитные контакторы (прибор для частых включений и отключений);
  • магнитные пускатели — трехполюсный контактор переменного тока с двумя тепловыми реле;

промежуточное реле — маломощный контактор для слабых токов, но осуществляющий огромное количество коммутаций.

Для автоматизации оборудования жилых домов и общественных зданий применяются весьма популярные модульные контакторы шведской фирмы ABB. Они работают в цепях коммутации и управления сетями инженерно-технического обеспечения зданий. Например, ABB ESB-63-40 — контактор для управления электрооборудованием, работающий, как в сетях постоянного, так и переменного тока. Это четырехполюсные контакторы с высокой стойкостью к износу, защитой от перенапряжения 5 кВ, удобные в монтаже и устойчивые к низким температурам.

Контакторы серии MF и MT (Энергия) устанавливаются в силовых цепях, серии КМ — имеют весьма широкую сферу применения (офисы, больницы, промышленные и жилые здания), а контакторы ИЭК (IEK) — используются для дистанционного управления.

Преимущества модульных контакторов в том, что они решают много задач, не представляют сложности в монтаже, компактны и удобны для размещения в щитке, бесшумны в работе

Кроме того, модульные контакторы подключаются к сетям с большими мощностями и, при этом, обладают хорошей электробезопасностью (2 класс), что очень важно для неквалифицированных пользователей. К недостаткам иногда можно отнести не слишком большое число коммутационных операций у некоторых моделей

Что такое реле, и где их применяют?

Электромагнитное реле – высокоточное и надежное коммутационное устройство, принцип действия которого основан на воздействии электромагнитного поля. Имеет простую конструкцию, представленную следующими элементами:

  • катушка;
  • якорь;
  • неподвижные контакты.

Электромагнитная катушка закрепляется неподвижно на основании, внутри неё находится ферромагнитный сердечник, подпружиненный якорь прикреплён к ярму, чтобы возвращаться в нормальное положение при обесточивании реле.

Говоря проще, реле обеспечивает размыкание и замыкание электрической цепи в соответствии с входящими командами.

Электромагнитные реле отличаются надежностью в работе, в виду чего они используются в различных промышленных и бытовых электроприборах и технике.

Что такое реле: краткий экскурс в историю

Термин пришел из английского языка, от слова «reley», обозначавшим в старину смену почтовых лошадей, а позднее передачу эстафеты в спортивных состязаниях. Существует две версии создания такого устройства. Согласно первой реле изобрел русский ученый П.Л. Шиллинг в начале 30-х годов прошлого столетия. Это была основная составляющая часть в разработанном им телеграфе. Однако большая часть историков склоняется к тому, что прародителем реле стал американец Джорж Генри. Некоммутационное устройство, основывавшееся на электромагнитном принципе действия, получило распространение в 1937 году. Именно тогда поступил в производство первый телеграф.

Какая из этих версий правильная, сейчас уже сказать нельзя. Возможно, как часто это бывает, ученые разрабатывали устройство параллельно, не зная об изобретениях друг друга. Об этом говорит и то, что историками называется один и тот же промежуток времени появления реле – 1931-1935 годы.

Это устройство отключает напряжение при перегрузке сети по мощности, сберегая электропроводку

Установка и настройка реле тока

Как правильно установить и подключить реле тока

  1. Определите место установки реле тока. Реле тока должно быть установлено вблизи оборудования, которое нужно защитить.
  2. При необходимости установите шунтирующее реле тока. Оно может быть установлено параллельно к оборудованию, чтобы измерить ток без необходимости разрыва цепи.
  3. Подключите реле тока к электрической цепи. Обычно реле тока подключается к главному питанию и к контактам, которые нужно защитить от перегрузки или короткого замыкания.
  4. Установите настройки реле тока в соответствии с требованиями электрической системы. Настройки могут варьироваться в зависимости от типа реле тока и конкретных потребностей системы.

Как настроить реле тока для определенных электрических систем

  1. Определите минимальный и максимальный ток, который должен проходить через реле тока для защиты системы от перегрузки или короткого замыкания. Эти параметры могут быть указаны в документации по оборудованию.
  2. Установите пороговое значение тока на реле тока. Это значение должно быть равно или ниже минимального значения тока, чтобы обеспечить надежную защиту системы. Обычно пороговое значение тока устанавливается с помощью регулируемого резистора на реле тока.
  3. Проверьте настройки реле тока, чтобы убедиться, что они соответствуют требованиям системы. При необходимости скорректируйте настройки реле тока.

Рекомендации по безопасной установке и настройке

  • Перед установкой реле тока убедитесь, что система отключена от источника питания.
  • Для обеспечения надежной защиты системы, установите реле тока как можно ближе к контактам, которые нужно защитить от перегрузки или короткого замыкания.
  • При установке реле тока следуйте инструкциям производителя и обращайтесь к квалифицированному электрику, если у вас есть какие-либо сомнения.
  • Перед настройкой реле тока убедитесь, что вы полностью понимаете требования электрической системы.
  • При настройке реле тока используйте только рекомендованные производителем методы и инструменты.
  • Перед использованием реле тока проверьте его настройки, чтобы убедиться в его правильной работе.

Примеры

  1. Установка и настройка электромеханического реле тока на оборудовании для автоматической выключки в случае перегрузки. В этом случае установите реле тока на главном питании и настройте пороговое значение тока на уровне, который соответствует максимальному значению тока, которое может пройти через систему.
  2. Установка и настройка электронного реле тока для регулирования скорости двигателя в промышленности. В этом случае установите реле тока на цепи питания двигателя и настройте пороговое значение тока на уровне,который соответствует максимальному значению тока, которое может потреблять двигатель при заданной скорости.

Расчеты

Пороговое значение тока на реле тока может быть рассчитано с помощью формулы:

I = P / V,

где I — ток, P — мощность оборудования, V — напряжение в системе. Например, для оборудования мощностью 1 кВт и напряжением 220 В, пороговое значение тока будет равно 4,55 А (I = 1000 Вт / 220 В = 4,55 А). Однако, для надежной защиты системы, рекомендуется установить пороговое значение тока ниже этого значения, например, 4 А.

Также для расчета можно использовать информацию о номинальном токе оборудования, которая обычно указана в его документации. Например, для оборудования с номинальным током 5 А, рекомендуется установить пороговое значение тока на уровне 4,5 А для надежной защиты системы.

Что такое электромагнитное реле?

Cразу отметим, что из всего многообразия реле мы рассмотрим лишь электромагнитные реле. А из множества электромагнитных реле рассмотрим те, которые наиболее широко применяются в околокомпьютерных устройствах.

Электромагнитное реле (далее — реле) – это устройств, позволяющее посредством небольших токов управлять большими токами.

Мы уже сталкивались ранее с подобными устройствами. Да, когда изучали биполярные и полевые транзисторы. Так, в биполярном транзисторе небольшой ток базы управляет гораздо большим (в десятки и сотни раз) током коллектора.

Отметим, что транзисторы, в отличие от реле, гораздо более быстродействующие приборы, и могут управлять более высокочастотными сигналами. Но реле в целом более надежная штука, чем полупроводниковый транзистор.

В электромагнитном реле, в отличие от биполярного транзистора, управляющая цепь гальванически развязана от силовой, что, в общем случае, является преимуществом.

Основные виды и технические характеристики электромагнитных реле

Различают следующие типы:

  1. Реле тока – по своему принципу действия практически не отличается от реле напряжения. Принципиальная разница заключается лишь в конструкции электромагнитной катушки. Для реле тока катушка наматывается проводом большого сечения, и содержит небольшое количество витков, ввиду чего имеет минимальное сопротивление. Реле тока может быть подключено через трансформатор либо напрямую к контактной сети. В любом случае оно корректно контролирует силу тока в управляемой сети, на основании чего осуществляются все процессы коммутации.
  2. Реле времени (таймеры) – обеспечивает задержку времени в сетях управления, необходимую в некоторых случаях для включения устройств в соответствии с определенным алгоритмом. Такие реле имеют расширенный диапазон настроек, необходимый для обеспечения высокой точности их работы. К любому таймеру времени предъявляются отдельные требования. Например, низкое потребление электрической энергии, небольшие габариты, высокая точность работы, наличие мощных контактов и т. д. Стоит отметить, что для реле времени, которые включают в конструкцию электропривода, дополнительные повышенные требования не предъявляются. Главное, чтобы они имели прочную конструкцию и обладали повышенной надежностью, поскольку им приходится постоянно функционировать в условиях повышенных нагрузок.

Любой из типов электромагнитных реле имеет свои определенные параметры

Во время выбора необходимых элементов стоит уделить внимание составу и свойствам контактных пар, определиться с особенностью питания. Далее следует изучить их основные характеристики:

  • Напряжение либо ток сработки – минимальная величина силы тока либо напряжения, при которой осуществляется переключение контактных пар электромагнитного реле.
  • Напряжение либо ток отпускания – максимальная величина, управляющая ходом якоря.
  • Чувствительность – минимальная величина мощности, необходимая для сработки реле.
  • Сопротивление обмотки.
  • Рабочее напряжение и сила тока – величины этих параметров, необходимые для оптимальной работы электромагнитного реле.
  • Время сработки – период времени от начала подачи питания на контакты реле до его включения в работу.
  • Время отпускания – период, во время которого якорь электромагнитного реле займет свое изначальное положение.
  • Частота коммутации – количество раз сработки электромагнитного реле за отведенный временной интервал.

Контактные и бесконтактные

В соответствии с конструкционными особенностями исполнительных элементов, все электромагнитные реле делятся на два типа:

  1. Контактные – имеют группу электрических контактов, которые обеспечивают работу элемента в электрической сети. Коммутация осуществляется за счет их замыкания либо размыкания. Являются универсальными реле, используются практически во всех типах автоматизированных электрических сетей.
  2. Бесконтактные – их главная особенность в отсутствии исполнительных контактных элементов. Процесс коммутации осуществляется за счет регулировки параметров напряжения, сопротивления, ёмкости и индуктивности.

По сфере применения

Классификация электромагнитных реле согласно области их использования:

  • цепи управления;
  • сигнализация;
  • автоматические системы противоаварийной защиты (ПАЗ, ESD).

По мощности управляющего сигнала

Все типы электромагнитных реле имеют определенный порог чувствительности, в связи с этим они делятся на три группы:

  1. маломощные (менее 1 Вт);
  2. среднемощные (до 9 Вт);
  3. высокомощные (более 10 Вт).

По быстродействию управления

Любое электромагнитное реле отличается быстродействием управляющего сигнала, в связи с чем они делятся на:

  • регулируемые;
  • замедленные;
  • быстродействующие;
  • безынерционные.

По типу управляющего напряжения

Реле разделяют на следующие категории:

  1. постоянного тока (DC);
  2. переменного тока (AC).

На фото ниже видно, что на катушке указано рабочее напряжение 24 VDC, то есть 24 В постоянного тока.

Реле тока, виды и применение

Реле тока – устройства, чаще всего используемые для сигнализации превышения тока в контролируемой цепи, а также для отключения электрических цепей, в случае возникновения перегрузок и коротких замыканий. Применяемые реже реле минимального тока, наоборот, предназначены для размыкания цепей в случае достижения в них определенного минимального его значения.

Существует много различных типов токовых реле (в дальнейшем ТР), отличающихся принципом действия и конструктивным исполнением

«Классическое» ТР представляет собой катушку с железным сердечником и подпружиненный подвижный якорь, управляющий контактами.При прохождении тока по катушке создаётся магнитное поле, под действием которого сердечник катушки намагничивается и притягивает якорь, вызывая срабатывание контактов.В отличие от реле напряжения катушка ТР содержит небольшое количество витков провода довольно большого диаметра (зависит от величины тока, на который оно рассчитано) За счёт чего и достигается небольшое падение напряжения на катушке, что важно, так как катушка включается последовательно с контролируемой цепью.Некоторые ТР имеют регулировку тока срабатывания, которая чаще всего осуществляется изменением натяжения пружины якоря. Диапазон регулировки может составлять десятки процентов

Реле переменного тока (для контроля больших токов) может быть включено через трансформатор тока.Важнейшей характеристикой ТР является время его срабатывания. У реле максимального тока, время срабатывания должно быть как можно меньше и может достигать десятков миллисекунд. Эти устройства используются для защиты от коротких замыканий.Для защиты от длительных перегрузок вместе с этими устройствами используют реле времени, осуществляющие задержку отключения защищаемой цепи. Это исключит возможные ложные срабатывания при кратковременных превышениях тока. Время срабатывания, обычно регулируется.Тепловое ТР представляет собой биметаллическую пластину с нагревательным элементом из материала с высоким удельным сопротивлением (нихром). Она состоит из двух материалов с разными коэффициентами теплового расширения. При нагревании, пластина изгибается, воздействуя на исполнительный механизм.Время срабатывания теплового ТР зависит от величины тока, превышающего номинальное значение уставки ТР. Получается это вследствие того, что чем больше ток, тем быстрее происходит разогрев биметалической пластины и время срабатывания, соответственно уменьшается.Такая характеристика в большинстве случаев является предпочтительной. Поэтому из-за простоты конструкции и надежности в работе, тепловые ТР, как и реле электромагнитного типа, получили очень широкое распространение.Трёхполюсные тепловые ТР, совместно с электромагнитными пускателями, применяются, чаще всего для защиты электродвигателей. Они имеют регулировку тока срабатывания (в пределах +/- 5-10%) кнопку возврата.Реле упомянутых типов совместно применяются и в автоматических выключателях, используемых как в быту, так и в промышленности. В корпусе автоматического выключателя размещается электромагнитное реле максимального тока для защиты от коротких замыканий и тепловое ТР для защиты от перегрузок.При установке управляющего флажка автомата в положение «включено», замыкаются контакты, включающие электрическую цепь, взводится пружина и срабатывает фиксатор, удерживающий это положение. Срабатывание любого токового реле приводит к освобождению фиксатора и под действием возвратной пружины контакты автоматического выключателя размыкаются (состояние «выключено»).Электронные ТР используется для мгновенного или с минимальной задержкой отключения оборудования при перегрузке по току. Электронная схема реле обрабатывает сигнал в соответствии с заданными характеристиками. Как правило, можно установить максимально допустимый ток и необходимое время задержки отключения при перегрузке.Кроме того, возможно и полное отключение функции контроля при пуске оборудования на некоторое время, во избежание ложных срабатывание из-за возникновения в цепи больших пусковых токов.Электронные ТР могут быть как переменного, так и постоянного тока. Их выходы, непосредственно управляющие нагрузкой, могут быть выполнены бесконтактными. Это могут быть тиристоры, симисторы, IGBT, МОП транзисторы, а так же их оптоэлектронные аналоги.ТР может входить в состав некоторых устройств (бесконтактных пускателей, регуляторов мощности и т.п.). Так, в аналоговых электроприводах это часть схемы, а в цифровых электроприводах это функция программы управления. Параметры защиты по току задаются в настройках устройства.

Виды термореле защиты

Следует отметить, что на современном рынке электротехнических изделий представлены разные типы модулей тепловой защиты электрических силовых агрегатов. Каждый из этих типов устройств используется в конкретной ситуации и для определенного вида электрического оборудования. К основным разновидностям тепловых реле защиты можно отнести следующие конструкции.

  1. РТЛ — электромеханический прибор, обеспечивающий качественную тепловую защиту трехфазных электродвигателей и других силовых установок от критических перегрузок по току потребления. Кроме этого, термореле этого вида защищает электроустановку при дисбалансе питающих фаз, затянутого во времени пуска устройства, а также при механических проблемах с ротором: заклинивания вала и так далее.  Монтируется прибор на контактах ПМЛ (пускатель магнитный) или как самостоятельный элемент с клемником КРЛ.
  2. РТТ — трехфазное устройство, предназначенное для обеспечения защиты электрических двигателей с короткозамкнутым ротором от токовых перегрузок, перекосу между питающими фазами и при механических повреждениях ротора, а также от затянутого по времени пускового момента. Имеет два варианта установки: как самостоятельный прибор на панели или совмещенный с магнитными пускателями ПМЕ и ПМА.
  3. РТИ — трехфазный вариант электротеплового расцепителя, защищающего электрический двигатель от тепловых повреждений обмоток при критическом превышении значений тока потребления, от длинного пускового момента, асимметрии питающих фаз и при механических повреждениях движущихся частей ротора. Устанавливается устройство на магнитных контакторах КМТ или КМИ.
  4. ТРН — двухфазное устройство электротепловой защиты электрических двигателей, обеспечивающее контроль длительности пуска и тока в нормальном рабочем режиме. Возврат контактов в исходное состояние после аварийного срабатывания осуществляется только вручную. Работа данного расцепителя совершенно не зависит от температуры окружающего воздуха, что актуально для жаркого климата и горячих производств.
  5. РТК — электротепловой расцепитель, при помощи которого можно контролировать один-единственный параметр — температуру металлического корпуса электрической установки. Контроль осуществляется с использованием специального щупа. При превышении критического значения температуры устройство отключает электроустановку от линии питания.
  6. Твердотельное — тепловое реле, не имеющее в своей конструкции каких-либо подвижных элементов. Работа расцепителя не зависит от температурного режима в окружающей среде и других характеристик атмосферного воздуха, что актуально для взрывоопасных производств. Обеспечивает контроль над длительностью разгона электрических моторов, оптимальным током нагрузки, обрывом фазных проводов и заклиниванием ротора.
  7. РТЭ — защитное термореле, по своей сути являющееся плавким предохранителем. Прибор изготовлен из металлического сплава с низкой температурой плавления, который плавится при критических значениях температуры и разрывает цепь, питающую электроустановку. Это электротехническое изделие монтируется непосредственно в корпус электросиловой установки на штатное место.

Из вышеприведенной информации видно, что в настоящее время существует несколько различных типов электротепловых реле. Все они используются для решения одной-единственной задачи — защиты электрических двигателей и других силовых электроустановок от токовых перегрузок с повышением температур рабочих частей агрегатов до критических значений.

Конструкция реле

Реле цепи управления состоит из термочувствительного элемента, и множества контактных точек. Цепь управления для защищенного компьютера проходит через контакты реле. Если машина перегружена на текущих уровнях, тепловой датчик реле переключается к тепловым реле перегрузки, от которых, в свою очередь, поступает сигнал к основному источнику питания машины.

Термин «чувствительный элемент» описывает количество отдельных контуров, управляемых переключателем. Количество проводов определяет количество контактов испарителя. Переключатели реле тепла обычно имеют от одного до четырех полюсов – стинол (stinol), , .

Спусковой механизм приводит в действие вспомогательный переключатель реле тепловое авв (abb), который разрывает цепи катушки, ведущие на контактор двигателя кми. В этот момент индикаторный автомат показывает: «Сработало».

Схема подключения магнитного пускателя

Характеристика видов

Реле тока можно разделить на первичные и вторичные. Первый тип чаще встречается в конструкциях выключателей. Применяется в электрической сети, напряжение которой составляет не более 1 тыс. В.

Вторичные реле срабатывают при помощи трансформатора тока, который подключается к кабелю питания. Трансформатор снижает ток до того значения, которое подходит для нормального функционирования прибора. Вторичный тип реле можно разделить на следующие подвиды:

  • индукционный;
  • электромагнитный;
  • дифференциальный;
  • устройство на интегральных микросхемах.

Электромагнитные реле могут быть нейтральными. Они одинаково реагируют на постоянный ток, который проходит по обмотке. По направлению движения якоря такие реле делятся на угловые устройства с перемещением якоря и с якорем, что втягивается. Электромагнитный аппарат состоит из следующих элементов:

  • контакты;
  • сердечник;
  • якорь;
  • штифт;
  • ярмо.

Чтобы удерживать якорь на большом расстоянии от сердечника, используются специальные пружины. Как только на обмотку поступает сигнал — формируется магнитная сила, и якорь прижимается к сердечнику. Это приводит к тому, что одни контакты замыкаются, а другие размыкаются.

Второй тип электромагнитных устройств — поляризованные приборы. Их главное отличие — присутствие двух обмоток и сердечников, а также постоянная контактная тяга.

Прибор электромагнитного типа имеют следующие преимущества:

  • доступная цена;
  • отсутствие необходимости охлаждения;
  • небольшое выделение теплоты;
  • невосприимчивость к помехам, которые могут возникать вследствие удара молнии.

Вам это будет интересно Проверка конденсатора мультиметром

Такие модели имеют свои недостатки. К их числу можно отнести небольшую скорость функционирования и формирование радиопомех во время работы силовых контактов.

Дифференциальные модели сравнивают занижение до потребителя и после него. В качестве потребителя может быть силовой трансформатор. Если он функционирует в нормальном режиме, то ток в нём всегда практически одинаковый. Однако при коротком замыкании баланс нарушается. Тогда прибор полностью замыкает контакты.

Устройства дифференциального типа чаще всего используются в бытовой технике. Они позволяют предотвратить утечку тока из проводов или прибора. Чаще всего таким образом защищается следующая бытовая техника:

  • светильники;
  • оргтехника;
  • бойлеры.

Преимущества и недостатки использования ЭМР

Основными аргументами в пользу использования в схеме управления электрическими цепями электромагнитного реле становится:

  • стойкость к воздействию на сети импульсных перенапряжений;
  • способность электроизоляции выдерживать до 5 кВ между контактами и управляющей катушкой;
  • незначительное падение напряжения на контактах в замкнутом состоянии;
  • возможность коммутации нагрузок до 4 кВт при размере менее 10 см³;
  • низкие показатели тепловыделения;
  • наличие гальванической развязки между контактной группой и цепями управления;
  • сравнительно доступная стоимость.

Среди «минусов» такого технического решения стоит выделить ограниченный механический ресурс оборудования, высокое потребление тока, создание помех в момент срабатывания.

Понравилась статья? Поделиться с друзьями:
Строй-Инвест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: